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ABSTRACT

 Synthetic aperture radar (SAR) exploits very high
spatial resolution via temporal integration and own-
ship motion to reduce the background clutter power in
a given resolution cell to allow detection of non-mov-
ing targets. Ground moving target indicator (GMTI)
radar, on the other hand, employs much lower resolu-
tion processing, but exploits relative differences in the
space-time response between moving targets and clut-
ter for detection. Therefore, SAR and GMTI represent
two different temporal processing resolution scales
which have typically been optimized and demonstrated
independently to work well for detecting either station-
ary (in the case of SAR) or exo-clutter (in the case of
GMTI) targets. 

Based on this multi-resolution interpretation of air-
borne radar data processing there appears to be an
opportunity to develop detection techniques that
attempt to optimize the signal processing resolution
scale (e.g., length of temporal integration) to match the
dynamics of a target of interest. This paper investigates
signal processing techniques that exploit long CPIs to
improve the detection performance of very slow mov-
ing targets. 

1.  INTRODUCTION

A major goal of the KASSPER program is to develop
new techniques for detecting and tracking slow-moving
surface targets that exhibit maneuvers such as stops and
starts. Therefore, it is logical to assume that a combina-
tion of SAR and GMTI processing may offer a solution
to the problem. SAR exploits very high spatial resolu-

tion via temporal integration and ownship motion to
reduce the background clutter power in a given resolu-
tion cell to allow detection of non-moving targets.
GMTI radar, on the other hand, employs much lower
resolution processing, but exploits relative differences in
the space-time response between moving targets and
clutter for detection. Therefore, SAR and GMTI repre-
sent two different temporal processing resolution scales
which have typically been optimized and demonstrated
independently to work well for detecting either station-
ary (in the case of SAR) or fast-moving (in the case of
GMTI) targets. 

Based on this multi-resolution interpretation of air-
borne radar data processing there appears to be an
opportunity to develop detection techniques that attempt
to optimize the signal processing resolution scale (e.g.,
length of temporal integration) to match the dynamics of
a target of interest. For example, it may be beneficial to
vary the signal processing algorithm as a function of
Doppler shift (i.e., target radial velocity) such that SAR-
like processing is used for very low Doppler bins, long
coherent processing interval (CPI) GMTI processing is
used for intermediate bins, and standard GMTI process-
ing is used in the high Doppler bins. Figure 1 illustrates
the concept. While not addressed in this paper, Figure 1
also suggests that varying the bandwidth as a function of
target radial velocity may also be appropriate. 

This paper explores signal processing techniques that
“blur” the line between SAR and GMTI processing. We
focus on STAP implementations using long GMTI CPIs
as well as SAR-like processing strategies for detecting
slow-moving targets. The performance of the techniques
is demonstrated using ideal clutter covariance analysis
as well as radar sample simulations

Section 2 presents the details about the radar simula-
tion used to analyze the signal processing algorithms.
Section 3 investigates the advantages of long CPIs using
ideal covariance analysis. Section 4 introduces two
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adaptive signal processing techniques that attempt to
exploit the long CPIs to improve the detection perfor-
mance of very slow moving targets. Section 5 presents
performance results of the techniques using simulated
radar samples. Finally, Section 6 summarizes the find-
ings and outlines areas for further research.

2.  GMTI RADAR SIMULATION

Simulated radar data was produced for use in analyz-
ing the signal processing techniques proposed in this
paper. Under previous simulation efforts [1-4] where the
CPI length was short it was possible to ignore certain
effects due to platform motion during a CPI (e.g., range-
walk and bearing angle changes of the ground scattering
patches). Under the current effort, however, where we
are specifically interested in long CPIs it was important
to produce simulated data that accurately accounts for
the effects of platform motion. Therefore, the simulated
data samples were computed as,

,(1)

where  is the range bin index,  is the
pulse index,  is the antenna index,  is the
number of spatial channels,  is the number of pulses,

 is the radar waveform (LFM chirp compressed
using a 30 dB sidelobe Chebychev taper),  is the sam-
pling interval,  is the radio wavelength,  is the speed
of light,  and  are the two-way range and direc-
tion-of-arrival (DoA) respectively for the  ground
clutter patch on the  pulse,  is the complex ground
scattering coefficient,  is the relative phase shift
of the  antenna element for a signal from DoA ,
and  is a random complex modulation from pulse to
pulse due to internal clutter motion (ICM) [5].

The ideal clutter covariance matrix for a given range
sample (i.e., range bin) is given as,

,

where the vector  is the space-time response of the
 scattering patch. The elements of  are ordered

such that the first  elements are the array spatial snap-
shot for the first pulse, the next  elements are the spa-
tial snapshot for the second pulse, and so on. The
elements of  are given as,

,

Finally, we note that the matrix  is a covariance
matrix taper [6] that accounts for the decorrelation
among the pulses due to ICM and is based on the Bill-
ingsley spectral model for wind-blown foliage [7]. 

The simulation geometry is shown in Figure 2. The
platform is flying north at an altitude of 11 km and the
radar antenna is steered to look aft 17°. The clutter envi-
ronment consists of an area at a slant range of 38 km that
is slightly wider in the cross-range dimension than the
antenna subarray pattern. The area is comprised of a grid
of scattering patches of dimension 6 m x 6 m. The com-
plex amplitudes of the scattering patches are i.i.d. Gaus-
sian with zero mean and variance that results in a clutter-
to-noise ratio for a single subarray and pulse of approxi-
mately 40 dB at the slant range of 38 km. A list of sys-
tem parameters is given in Table 1.  

We note that for this particular scenario that a given
scattering patch in the mainbeam will “walk” on the
order of one range resolution cell relative to the platform
(due to platform motion) during the course of the 0.5
second CPI. 

Fig. 1. Illustration of multi-resolution processing concept.
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3.  IDEAL COVARIANCE ANALYSIS

This section presents the results of GMTI system per-
formance analyses as a function of CPI length using the
ideal ground clutter covariance matrix.

3.1.   Ground Clutter Cancellation

The ideal clutter covariance was used to investigate
GMTI performance as a function of the CPI length using
optimal space-time beamforming. The goal of this anal-
ysis was to help establish an understanding of the theo-
retical advantages of using longer CPIs to detect moving
targets. We employed a multi-bin post-Doppler space-
time beamformer [8] with weights computed using the
ideal clutter plus thermal noise covariance matrix,

(2)

where  is a matrix that transforms to post-Doppler ele-
ment space (i.e., each column of  represents one of the

adjacent Doppler filters),  is the covariance of the
thermal noise, and  is the space-time response of
a signal with DoA  and Doppler shift . We note that

 is the usual space-time steering vector [9] and
does not include the effects of range-walk. Also, in the
SINR results we do not account for the small losses that
this will cause due to mismatch with a true target
response. 

Figure 3 shows the signal-to-interference plus noise
ratio (SINR) loss as a function of CPI length for the
cases with and without ICM. SINR loss is defined as the
system sensitivity loss relative to the performance in an
interference-free environment [9]. In this case we have
used 7 adjacent Doppler bins formed via orthogonal
Doppler filters. It was found that using more Doppler
bins resulted in negligible gain in performance. It is
interesting to note that the shape of the filter response
versus Doppler does not improve significantly as the
CPI length is increased suggesting that the gains in min-
imum detectable velocity will be modest for longer
CPIs. 

Figure 4 shows the SINR for the two cases shown in
Figure 3 relative to the 8 pulse case. Thus we see the
effects of the increased sensitivity gain achieved by
using more pulses (i.e., longer integration time). If we
assume that the SINR for the 8 pulse case is 17 dB in the
Doppler bins well-separated from the clutter ridge then
the MDV point will be at approximately -5 dB on the
SINR loss curve (i.e., SINR = 12 dB which is a nominal
detection threshold). Therefore since the curves in Fig-
ure 4 are relative to the 8 pulse case the MDV point for
each CPI will also occur at -5 dB.  

Fig. 2. Simulation geometry.
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parameter value (units)

frequency X-band

bandwidth 10 MHz

PRF 1 kHz

number of pulses 512

antenna 3.5 m x 0.3 m

number of subarrays 6 (50% overlap)

subarray pattern Hamming (~40 dB sidelobes)

CNR 40 dB per subarray/pulse

platform speed 125 m/s

azimuth steering direction 17° re. broadside

Table 1. simulation parameters
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Figure 5 plots the MDV value as a function of the CPI
length for the cases with and without ICM. We see that
the gain in MDV drops off rapidly as the CPI length is
increased. Therefore, we conclude that arbitrarily
increasing the CPI will not result in significant gains in
MDV beyond a certain point which will generally be
determined by the system aperture size and ICM (or
other sources of random modulations from pulse-to-
pulse)    

3.2.   Targets in the Secondary Training Data

While longer CPIs do not significantly improve the
ability to resolve targets from clutter beyond a certain
point due to the distributed Doppler response of ground

Fig. 3. Optimal SINR loss. Top: no ICM. Bottom: Billingsley ICM. The center of the clutter notch is
at -3 m/s (two-way Doppler).

Fig. 4. Optimal SINR re. 8 pulse case. Top: no ICM. Bottom: Billingsley ICM.
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Fig. 5. MDV based on the curves shown in Figure 4.
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clutter as observed by a moving airborne platform there
is the potential that longer CPIs will help better resolve
targets in the scene. This has the obvious benefits of
improving tracker performance by allowing clusters of
closely-spaced targets to be resolved. 

An even greater potential benefit of the improved abil-
ity to resolve targets is that targets corrupting the sec-
ondary training data [3,10] will be less likely to result in
losses on other nearby targets. This is illustrated in Fig-
ure 6 where the SINR loss is shown for the case when a
single target is injected into the ideal clutter covariance
with a Doppler shift of 4.8 m/s. We see that as the CPI
length is increased the region incurring losses due to the
target in the covariance gets increasingly narrow indicat-
ing that it will only take a very small relative Doppler
offset between two targets to avoid them from cancel-
ling one another. Quantifying the effectiveness of longer
CPIs in mitigating the problem of targets in the second-
ary training data for realistic moving target scenarios is
an area for future research. 

4.  ADAPTIVE ALGORITHMS

This section proposes two adaptive signal processing
algorithms that exploit long CPIs to improve the detec-
tion performance of very slow-moving targets. The goal
will be to evaluate the hypothesis that longer CPI data
may be exploited to increase the number of samples
available for covariance estimation without significantly
increasing the range swath over which samples are
drawn. It is assumed that this will be advantageous in
realistic clutter environments where variations in the ter-
rain and land cover often limit the stationarity of the
radar data in the range dimension to narrow regions.

4.1.   Sub-CPI Processing

The ideal covariance analysis presented in Section 3.1
suggests that for a given system it may not be necessary
to coherently process all the pulses in a long CPI to
approach the optimal MDV. Therefore, if many pulses

are available it may be advantageous to limit the coher-
ent processing interval, but exploit the extra pulses to
increase the training data set for covariance estimation.
It is important to note that the potential advantage of
reducing effects due to targets in the training data will
not be realized in this case since the coherent processing
interval is still short. For example, Figure 7 illustrates an
approach for segmenting the pulses to form data snap-
shots that can be used for covariance estimation. In this
case the sample covariance matrix is computed as,

where  is the snapshot from the  range bin and
 sub-CPI. We note that vector  is formed by

reordering the matrix  shown in Figure 7 so that the
first  elements are the spatial samples on the first
pulse, the next  elements are the spatial samples on the
second pulse, and so on. The quantity  is the number
of training range samples and  is the number of sub-
CPIs used in the training. The effect of varying these
quantities is demonstrated in Section 5. 

The covariance estimate based on the sub-CPI data is
used to compute an adaptive weight vector that can gen-
erally be applied to each of the sub-CPIs in the range bin
under test to form  complex beamformer outputs.
Methods for combining these outputs either coherently
or incoherently to improve the system sensitivity is an
area for future research. It is worth noting, however, that
in general it should be possible to coherently combine
the outputs if unity gain constraints are employed in the
bemformer calculation and delays in the target response
in each sub-CPI relative to the start of the CPI are
accounted for.

Fig. 6. Optimal SINR loss for the case when a single
target corrupts the secondary training data. The target
corrupting the training data has Doppler = 4.8 m/s.
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Fig. 7. Illustration of sub-CPI segmentation.
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4.2.   Long-CPI Post-Doppler

An alternative approach to sub-CPI processing is to
Doppler process (e.g. discrete Fourier transform) the
CPI using all the pulses and then apply adaptive tech-
niques similar to multi-bin post Doppler STAP [8]. In
the case when the CPI is very long it may be advanta-
geous to employ SAR processing instead of Doppler
processing which will account for range-walk of the
scattering elements in the scene due to platform motion.
This approach has been proposed previously [11]. Fig-
ure 8 illustrates the concept. We note that this technique
will take advantage of the property of long CPIs to
reduce the effects of targets in the secondary training
data as long as multiple adaptive Doppler bins are
employed.  

In the simplest form the data from each antenna is
used to form a spatial-only covariance estimate using
data from Doppler and range bins (or cross-range and
range pixels in the case of SAR pre-processing). If we
only employ data from adjacent range bins for training
this technique (in the case of Doppler processing) is
identical to factored time-space beamforming [9] (i.e.,
single bin post-Doppler adaptive processing). In [11] it
was proposed that adjacent cross-range (or Doppler
bins) should also be included in the training set. This
may at first seem unusual in the context of GMTI STAP
for which training using only adjacent range bins is the
common practice. 

Figure 9 illustrates why it is efficacious to use data
from adjacent Doppler bins to estimate the correlation
among the spatial channels when the CPI is long. We see
that since the Doppler resolution is much finer than the

spatial resolution that clutter patches in adjacent Dop-
pler bins will have highly linearly dependent spatial
responses and therefore can be averaged to improve the
spatial covariance estimate1. The azimuth beamwidth of
the physical aperture is given as,

,

where  is the length of the aperture in the horizontal
dimension. The azimuth beamwidth of the synthetic
aperture (azimuthal extent of the ground clutter in a sin-
gle Doppler bin) is given as [12],

,

where  is the distance traveled by the platform dur-
ing the CPI,  is the PRF, and  is the platform speed.
The ratio of  to ,

,

gives an approximate expression for the number of Dop-
pler bins within the mainbeam and thus the number of
adjacent Doppler bins that can be used as training sam-
ples. For the system simulation discussed in Section 2
the quantity .

Figure 10 demonstrates the effects of increasing the
number of adjacent Doppler bins used in the training set
for the single adaptive bin case (i.e., factored time-space
adaptive beamforming). The total number of pulses in

Fig. 8. Illustration of long-CPI post Doppler pro-
cessing. Note training is possible in both range and
cross-range.
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the CPI is 256 which results in  and we note
that a 65 dB sidelobe level Chebychev taper is applied
across the 256 pulses prior to Doppler processing. In this
example the ideal spatial-only covariance matrix for
each of the adjacent Doppler bins used in the training
strategy was computed and then summed together to
form the ‘ideal’ estimated covariance. This covariance,
which takes into account the effects of training over
adjacent Doppler bins, was then used to compute SINR
loss. As expected, when the number of bins exceeds
about  the SINR loss begins to degrade
appreciably.    

More sophisticated versions of the long-CPI post-
Doppler algorithm will include multiple temporal
degrees of freedom. In [11] multiple adjacent SAR pix-
els were combined adaptively along with the spatial
channels to form the adaptive clutter filter. When train-
ing samples are only chosen from adjacent range bins
this version of the algorithm is similar to multi-bin post-
Doppler element space STAP [8]. In fact, if the pre-pro-
cessing uses Doppler filters instead of SAR processing
the algorithm is mathematically equivalent to multi-bin
post-Doppler STAP. 

Choosing training samples from adjacent Doppler and
range bins is not as straight forward as it was in the sin-
gle adaptive bin case since the samples can be chosen to
be either overlapped or non-overlapped in Doppler. In
[11] it was observed that the multi-pixel covariance esti-
mation process introduced “artificial” increases in the
correlation of the background thermal noise between
pixels when the overlapped training samples were used
since the thermal noise for two overlapping training
samples will typically be correlated. Theoretical analy-
sis of estimators that use overlapping training data to

estimate the multi-pixel correlation matrix is an area for
future research.

5.  RESULTS

The simulated data discussed in Section 2 was used to
test the two long CPI adaptive processing techniques
proposed in this paper. Five range samples were simu-
lated and an ideal covariance matrix for the center range
bin was generated. Adaptive weights were estimated
from the data samples using the various training strate-
gies and then combined with the ideal covariance matrix
to compute the SINR loss metric. 

Figure 11 shows the SINR loss for sub-CPI processing
as a function of the number of pulses in the sub-CPI for
three cases 1) range-only training, 2) sub-CPI only train-
ing, and 3) range and sub-CPI training. The adaptive
algorithm was multi-bin post-Doppler element space
STAP employing 3 adjacent adaptive Doppler bins.
Diagonal loading with a level of 0 dB relative to the
thermal noise was used in all cases.    

We see that range-only training results in poor perfor-
mance since their are too few training samples to sup-
port the adaptive DoFs. Performance is improved by
alternatively using the sub-CPIs from a single range bin
as the training data. In this case the number of training
samples is equal to the total number of pulses (512)
divided by the number of pulses in the sub-CPI. Thus for
the examples shown the number of sub-CPI training
samples is 64, 32, and 16 for the 8, 16, and 32 pulse sub-
CPI cases respectively. 

Finally, we see that if training samples are chosen
from both sub-CPIs and range bins we get near-optimal
(relative to the ideal covariance case) performance. In
this case the total number of training samples is the
number of range bins multiplied by the number of sub-
CPI segments. Thus the number of samples for the cases
shown is 320, 160, and 80 for the 8, 16, and 32 pulse
sub-CPI cases respectively. This example demonstrates
that highly localized training regions in range may be
possible if training data is augmented with sub-CPI data
snapshots. This strategy will generally be the most
advantageous in nonhomogeneous clutter environments.

Figure 12 shows the SINR loss results for the long-
CPI post-Doppler processing technique. The results are
presented for three cases 1) a single adaptive Doppler
bin, 2) 3 adjacent adaptive Doppler bins with over-
lapped Doppler training snapshots, and 3) 3 adjacent
adaptive Doppler bins with non-overlapped Doppler
training snapshots. In each case the CPI length is 512
and training data from 21 adjacent Doppler filters is
used in the covariance estimation. In this case

Fig. 10. Effect of Doppler training region size in
long CPI post-Doppler processing. The training bins
are centered around and include the bin under test.
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, but a value of 21 was used to ensure that no
losses were incurred due to over-extending the Doppler
training window. We also note that the single adaptive
Doppler bin case employs a 65 dB sidelobe level Cheby-
chev taper across the 512 pulses prior to Doppler pro-
cessing.

The upper left hand plot (‘1 adaptive bin’) has a black
dashed curve which represents the case when 5 range
samples are used to estimate the spatial covariance
matrix which in this case has dimension 6 due to the 6
spatial channels employed in the simulation. We note
that diagonal loading at a level of 0dB relative to the
thermal noise floor was required so the estimated covari-
ance matrix could be inverted. We see that the range-
only training results in poor performance due to the
small number of training samples. 

We see, however, that when adjacent Doppler bins are
used for training we get much better performance (red
and green curves). The red curve uses adjacent Doppler

bins and 5 range samples for training data and the green
curve uses adjacent Doppler bins from a single range
bin. We see that the best performance is achieved when
multiple adaptive Doppler bins are employed and train-
ing is performed using both adjacent range bins and
overlapping Doppler samples. The generally poor per-
formance when only adjacent Doppler samples are used
is most likely attributed to the correlation of the thermal
noise among the training samples which results in a poor
estimate of the background thermal noise statistics.
Developing a better understanding of this phenomenon
via analysis and simulation is an area for future research.

6.  CONCLUSIONS

The concept of using long CPIs to improve the detec-
tion of very slow-moving targets was investigated. The
concept was motivated by observing that airborne radars
use short CPIs to detect fast moving targets (e.g., GMTI
STAP) and very long CPIs to detect stationary targets

Fig. 11. SINR loss for sub-CPI training. Top: range-only training (5 range bins). Middle:
training using sub-CPIs from a single range bin. Bottom: training using sub-CPIs from 5
range bins. The black dotted line is optimal full-DoF STAP performance.
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(e.g., SAR) so that it is logical to assume the it may be
advantageous to use longer and longer CPIs as the
assumed Doppler velocity of targets of interest is
decreased. 

Theoretical analysis of optimal beamforming tech-
niques that cancel clutter (e.g., STAP) was used to dem-
onstrate that for a given system and operating
environment that there is a CPI length beyond which
significant improvements in MDV diminish. Beyond the
cut-off the width of the antenna and phenomenology
such as ICM limit the MDV performance. It was postu-
lated, however, that the problem of targets corrupting the
training data may be significantly reduced since when
the CPI is long it will require only a very small relative
difference in Doppler velocity between targets to cause
enough decorrelation so that when they corrupt the train-
ing data the resulting sensitivity losses are negligible.

While the improvements of optimal beamformers in
detecting very slow moving targets tends to diminish
beyond a certain CPI length adaptive implementations
of the optimal beamformers may benefit significantly
from longer CPIs. Two adaptive techniques were pre-
sented that take advantage of the longer CPI to improve
the convergence properties of the beamformer solution
and thus increase the performance of the beamformer. It

was shown that these techniques can reduce the number
of adjacent range samples required for training which
will generally improve performance in realistic clutter
environments where the stationarity of the ground clut-
ter is often limited to narrow range regions due to signif-
icant terrain relief and land cover variations.

The proposed algorithms were tested using a homoge-
neous clutter simulation that represents a nominal X-
band GMTI radar system. Future work is required to
determine the performance of the proposed techniques
in more realistic clutter environments and for varying
system parameters such as larger scanning angles and
higher bandwidths. The goal of the future work will be
to develop a better theoretical understanding of the tech-
niques via analysis and simulation and to determine
under what operating conditions and for what types of
systems they are best suited.

Finally, other approaches to multi-resolution process-
ing will be pursued. The concept of optimizing the radar
resources (i.e., CPI length and bandwidth) to improve
detection performance as a function of assumed target
Doppler shift is an area that may lead to radar systems
with significantly improved ability to track ground tar-
gets. 

Fig. 12. Long CPI post-Doppler processing. Top left: one adaptive bin (factored post-Doppler). Top
right: 3 adaptive bins (multi-bin post-Doppler) with overlapped training. Bottom left: 3 adaptive bins
with non-overlapped training. Red and Green curves are for adjacent Doppler bin training strategy
using either a single (green) or five (red) range samples.

range-only
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