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Where Would We Like to Be?
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Load & Resistance Factor

Design (LRFD)

Resistance, R
Load, Q

(I)Rn > Z yiQni

AASHTO (1998) LRFD based design



Design Guide Approach

Resistance, R

User supplies loads and level
of acceptable risk based on

change in Resistance Cumulative Probability

B-Basis
Design

Load/Stress A Basis

Level of Risk



How Does the Resistance

Change?

FRP Life prediction is Resistance, R

required as a function /
of load and ]
. : r
environmental history ,:
to assess the changes
INn Resistance

o

A, Residual
Resistance
X-years of service

B, Residual
Resistance
X-years of service

Initial
Resistance

“Emphasis on Combined Environments”
CERF/MDA Durability Gap Analysis



Developing Guidance on ¢

b= (;_R) exp(—agBVg) Where P = Fe and G=R-Q

n

(FORM) — Hasofer & Lind (1974)

Resistance, R

Initial
Resistance

Residual Resistance
X-years of service

Load, Q
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Estimating Remaining Strength
& Stiffness

FRP composites durability is best described by nonlinear cumulative damage
approaches where residual strength and stiffness are tracked during life

Degradation Processes
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Reifsnider et al. (1975- present) Stress on Critical Element



Simulation Approach

eDevelop estimate on resistance
based on stress analysis/material No Yes
eDevelop load/environment history | {mm )
based on statistical description
(Monte Carlo Simulation) I
\/ Compute
_ £| Life Prediction ¢ & Ps
e|nput material >
characteristics (S-N o
curve, stiffness and »n
strength reduction as a :> S
function of environment - o
including statistical 2
description) n




Material

[csm/0/90/csm/+45/csm],

Nexus 110-039, 0.18mm

XCDM 1810 =-xx mm @ 55vol%
in the C and D layers and @
28v01% in the M layer

XDBM 1710 =yy mm @ 55vol% in
the C and D layers and @ 28vol%

Vf:520/0 in the M layer

CSM M8643 CSM, Mat 1.0 0z =

E'glaSS/ Vinyl Ester 0.48 mm @ 28 Vol% glass

*Owens Corning Fabric XDBM 1710

Dow Derakane — 640-900
Pultruded @ Dow Freeport, TX

xCDM 1810

Nexus 110-039




Material Variation: Fatigue

Applied stress / Ultimate strength
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Laminate Modulus Reduction
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Stiffness Reduction: o Variations
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Remaining Strength & LRFD
Preliminary Trials

Create Loading history
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Random Initial Material Properties (Monte Carlo) <
L]

> CLT
l

N N4 4, N
Fr (n) = Fr(0) - j (1~ Fa(m)-3- ()" d()
Y

For N cycles %— Material IIEvqutlon

| NN

LRED For i trials




Fatigue Validation
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Cumulative Probability

Simulated Case: Fatigue

1.2
B=N, Experimental
1 Residual Strength [
o =10.9 ® Fatigue at 35%
0.8 - B =23.6 KSI ULT
® 500 trials to
0.6 18750 cycles
04 Simulated
' Residual Strength
a=5.8 Initial Strength
0.2 B =23.9 KSI Lo =4.9
B =34.8 KSI
0 _ | -
1000 10000 100000

Strenath (psi)



Validation: Coupon Level

® Experimental: 15 Samples fatigued at 35% ULT to 18750 cycles or to
failure — Survivors’ residual strength measured

® Simulation: 500 trials to 18750 cycles or (u-2*o)

Residual Strength Distribution
Weibull Parameter | Experimental | Simulated

o 10.9 5.8
B=N, B (psi) 23.6E3 |[23.9E3

Probability of failure during fatigue
before the sample reached 18750 cycles

Experimental Simulated

23% 23%




MRG Qualifications

Members to the International Editorial Boards
of the ASCE Journal of Composite for
Construction & the International Journal of
Fatigue

NSF CAREER Award 1997 and Durability of
e Textbook: Damage Tolerance and Material Sysrems
Durability of Material Systems

MRLife: Licensed code for the assessment of
composite durability

Sponsored Research: $8 million in Corporate,
State and Federal grants (over 7 years)

Design Manual Development for composite
structures
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MRG Facilities

e Experimental characterization & validation
including combined hygrothermal-
mechanical-loading facilities

e Analysis & modeling at multiple length and
time scales

e Visualization & immersive environments




