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Abstract—This interim report describes the vehicle “Junior,” 
which is the Stanford Racing Team entry into the DARPA Urban 
Challenge. We survey the current state of the hardware and 
software development, and discuss ongoing experiments. 
 

I. INTRODUCTION 
HE Stanford Racing Team won the 2005 DARPA Grand 
Challenge, using a modified VW Touareg dubbed 

“Stanley.” For the 2007 Urban Challenge, Stanford has been 
selected as Track A Participant. 
 
This article serves as an interim report for the team’s progress, 
in partial fulfillment of DARPA’s requirements of the Track A 
Urban Challenge Program. The report describes the existing 
hardware and software components, and lays out the ongoing 
evaluation and development plan. 

II. TEAM COMPOSITION 
 
The Stanford Racing Team is comprised of students, staff, and 
faculty of Stanford University and various affiliated 
organizations. The team composition is largely identical to the 
one that developed Stanley in 2005. The members of the 
Stanford Racing Team are drawn from the following academic 
and corporate entities: 
 

• Stanford University (lead responsibility for software 
development and overall project lead) 

• Volkswagen of America, Electronics Research Lab 
(lead responsibility for vehicle development) 

• Mohr Davidow Ventures (lead responsibility for 
communications and outreach) 

• NXP (founded by Philips) 
• Google 
• Intel 
• RedBull 

 

 
More information about the Stanford Racing Team can be found at 

www.stanfordracing.org. 

The overall team lead is Sebastian Thrun (Stanford). The 
vehicle development is lead by Burkhard Huhnke together 
with Ganymed Stanek and Suhrid Bhat (all from VW ERL). 
The software development is lead by Mike Montemerlo, with 
Jesse Levinson, Anya Petrovskaya, Gabe Hoffmann, Doug 
Johnston, and Dirk Hähnel (all of Stanford University), and 
Dmitri Dolgov (Toyota Technology Center). Finally, the 
communications lead is Pamela Mahoney (MDV) with David 
Orenstein (Stanford University) and Steve Keyes (VW).  
Approximately 20 other students and staff members are 
working on various aspects of the software and hardware.  
Most team members work full time on the project. Some team 
members initially participated in the development through the 
Stanford course CS294-Projects in Artificial Intelligence, 
which was taught in the Winter Quarter of AY 2006/07.  
 
Team meetings take place weekly for the technical team, with 
various subgroups meeting more frequently. Meetings of the 
advisory board take place at Stanford once a month. 

III. VEHICLE PLATFORM 

A. Vehicle and  Instrumentation 
Junior is based on a stock VW Diesel Passat Wagon, as 
presently sold in Europe. In total, our development utilizes 
three vehicles, where one serves the role of the primary race 
vehicle, and the two other vehicles are used as backup and for 
development purposes.  The following image shows Junior 
(this image is a photo-illustration; the present development 
vehicle is not “stickered” as shown below): 
 

 
For development, one of the vehicles has been modified for 
computer control; the other two vehicles are presently being 
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modified. A low-torque DC motor is connected by a belt to 
the steering column to enable autonomous steering. Direct 
electronic interfaces into the brake booster, throttle, gearbox, 
and turn signals allow for tight control of the vehicle’s speed 
and direction. Additional interfaces supply the onboard 
computers with vehicle state data, such as steering angle and 
individual wheel speeds. A wireless kill switch and physical e-
stop buttons are presently being integrated. 
 
The development vehicle also possesses a battery backup 
system, which can be plugged into an external power supply 
for keeping the computers running while the vehicle’s engine 
is shut down.  
 
The trunk assembly is visible in this photograph: 
 

 
 

B. Computers 
 
All control computers are mounted in the trunk of the vehicle. 
Presently, this comprises two PCs with Intel multi-core CPUs, 
and interface control modules for the various sensors and 
actuators. All computers run Redhat Linux - FC6. 
 

C. Sensors 
Junior uses the Applanix POS LV 420 Navigation system for 
state estimation (location, orientation, velocities). The POS 
LV 420 system comes with three GPS antennae, mounted on 
the roof of the vehicle, a high quality Inertial Measurement 
Unit, mounted in the trunk over the rear axle, and an external 
wheel encoder, attached to the left rear wheel. 
 
For external sensing, Junior presently features a Velodyne HD 
LIDAR laser range finder, shown here without the actual 
enclosure: 
 

     
The following images show typical range scans, acquired by 
this scanner: The data is obtained in full 3-D, and geo-
registered using the Applanix pose information. 

 

    
 
Additional range sensing is achieved through two IBEO 
Alasca XT sensors, mounted on the front bumper of the 
vehicle.  
 

 
 
The following images show typical IBEO range scans: 
 

   
 
The IBEO data is sparser than the Velodyne HD LIDAR, yet 
the ground is filtered out automatically, making the data easier 
to process. 
 
Additionally, Junior uses an omni-directional Ladybug 
camera, manufactured by PointGray. This camera is 
comprised of six CMOS video cameras, connected to Junior’s 
computers through a firewire interface. The following figure 
shows an example snapshot of multiple cameras: 
 

 
 
The cameras are calibrated and images are projected onto a 
spherical model, to provide full panoramic imaging, here 
superimposed on an aerial map of the environment. 
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This sphere, from the vehicle’s viewpoint, provides a full 
omni-directional view of the area surrounding the vehicle, 
which also includes the road surface. 
 
The present system also possesses two long-range radar sensor 
manufactured by Bosch. These sensors provide additional 
range data of vehicles, complementing the laser data. Radar is 
used to detect vehicles at extended ranges, and vehicles that 
are occluded by other vehicles. 
 
In the near future, two SICK LD-LRS1000 lasers will be 
mounted on the back corners of the vehicle, to ensure 
complete coverage behind the vehicle for reverse driving and 
passing maneuvers. 

IV. PERCEPTION SOFTWARE 

A. Software Platform 
Junior inherits from Stanley a distributed modular software 
architecture, through which dozens of modules process and 
propagate data asynchronously. The architecture uses 
Simmons’s IPC (Inter-Process Communication) software for 
communication.  
 
Incoming data from the robot and its sensors are pipelined 
through multiple stages, comprising: sensor interfaces, 
perception and state estimation, planning, control, and vehicle 
interfaces. The pipeline is executed in parallel on all 
processors, imposing a total processing delay of 
approximately 300ms between sensor measurements all the 
way to vehicle control.  
 
The software also logs all data, and integrates the sensor data 
with other data sources, such as aerial imagery. 
 
Another key facility of Junior’s software is visualization. A 
rich visualization suite makes it possible to monitor the 
robot’s state and spot problems. The following image depicts 
an RNDF file of campus superimposed on aerial imagery 
obtained from an online source. 
 

 
 
For the Urban Challenge, we developed a new suite of 
software for reading in RNDF files and tracking the vehicle 
relative to these files. 
 

B. RNDF Localization 
The primary function of the panoramic camera system is lane 
marker detection, and precision localization. The Stanford 
Racing Team has developed a full processing pipeline for lane 
marker finding in images, and precision alignment relative to 
the RNDF. This pipeline operates in real-time, using a special 
on-board Graphical Processing Unit (GPU). 
 
In the first processing step, Junior’s pipeline corrects for roll 
and pitch of the vehicle, and then “rectifies” the panoramic 
image into a flat overhead image. In this image, lane markers 
are now in the same geometric reference frame as the lane 
information in the RNDF, using the same relative 
measurement units: 
 

 
 
The image is then analyzed for the location and color of lane 
markers. A least squares process aligns the found lane markers 
with the RNDF, correcting for possible GPS errors. 
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This “aligned” image shows the RNDF superimposed to the 
lines found by our algorithm. Small pink bars visualize the 
residual error in this process. The precision of this alignment 
is usually within a few centimeters. 
 
To increase the robustness of this approach, our method 
automatically rejects regions of high ground clutter, as well as 
intersection regions. Examples of rejected regions include 
words on the pavement (shaded cyan), and intersections 
(shaded orange) in the image below. This is all achieved 
without any human intervention. 

 

 
 
The result of this alignment process is fed back into the pose 
estimation module, to further refine the position estimates of 
the GPS system. As a result, Junior knows its lateral location 
on a lane usually with an accuracy of five centimeters. The 
longitudinal accuracy is typically half a meter, due to the lack 
of environment variation in the driving direction. The process 
runs online. 
 

C. Curb Finding 
Junior also analyses Velodyne range data to identify small, 
curb-like obstacles. These obstacles are found through an 
analysis of individual scan lines. In Junior’s software, a 
machine learning method has been trained to detect “curb 
signatures.” Once a sub-like structure has been found, it is 
used in collision avoidance and precision localization. 
 

The following image illustrates curb finding for a single range 
sensor scan. In this image, curbs are colored white and pink. 
White curbs are spurious (e.g., tree trunks); pink curbs have 
been matched to the RNDF. As can be seen in this image, 
Junior find curbs reliably, and all spurious curbs are only 
found outside the RNDF lane area, where they do not impact 
Junior’s driving performance: 

 

 
 

The curb finder operates in real-time. Curb data will be used 
both for collision avoidance and for localization. 
 

D. Vehicle Tracking 
Special routines have been developed for tracking moving 
objects in the environment. The present tracking method can 
independently use range data from the Velodyne and the 
IBEO range sensors, and it utilizes radar data to augment the 
tracking results. 
 
The processing pipeline for object tracking proceeds in 
multiple steps. First, the range data is filtered for vertical 
obstacles, and areas outside the RNDF are discarded from 
consideration, as are measurements of the ground plane.  
 
Next, the processing pipeline uses particle filters to fit 2-D 
rectangles to the surviving data (the z-dimension is ignored in 
this analysis). Each rectangle may be moving or stationary, 
and multiple rectangles may be necessary to explain a sensor 
scan. For moving objects, the tracked rectangles are annotated 
with an estimated velocity. The following image illustrates a 
typical situation with multiple moving objects. 
 

 
 
The outcome of the dynamic object tracker is a list of tracked 
objects, annotated by their velocity. Stationary objects are 
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specially marked, since they might require different behavior. 
In empirical testing, this approach was found to be highly 
accurate and reliable. 
 

E. RNDF Construction 
For training purposes, the Stanford Racing Team has 
constructed a method for semi-automatically generating 
RNDF files. This method analyzes logged laser data for the 
location of lane markers, and it uses Markov Random Field 
techniques for lane marker completion when lane markers are 
locally washed out.  The following two examples illustrate the 
methods when applied to highway data: 
 

  
 
Clearly, this method will not be useful for the final race; yet it 
enables the team to quickly acquire new RNDFs in new 
training environments. 

V. PLANNING AND CONTROL SOFTWARE 

A. Global Route Planning 
The route planer uses dynamic programming to propagate a 
cost function over the entire road network defined by the 
RNDF. This function estimates the expected time it will take 
to reach a given goal location, from any location in the world. 
Am example using the DARPA-provided sample RNDF is 
shown here: 
 

 
 
The cost of each segment is computed from an analysis that 
determines the right of way at each intersection, and penalizes 
potential yield times, and slow-downs in turns.  
 
It is important to note that the fact that this analysis is 
performed for each individual lane of a multi-lane road 
segment. By asserting a particular a priori probability of 
failure for lane change operations, the resulting cost function 

penalizes being in a left lane close to an intersection where a 
right turn is expected. Given no other data, this cost function 
describes the minimum cost to the goal from every location in 
the RNDF.  When used in conjunction with local sensor data, 
the cost function can be used to evaluate the relative costs of 
alternative routes to the goal, allowing the robot to 
immediately replan routes given slow traffic conditions or 
road blockages. 
 
The dynamic programming is rerun each time the robot’s goal 
location is changed (once for each MDF waypoint).  The 
value function can be computed in less than 100ms for 
RNDFs far larger than the sample RNDF, making it feasible to 
start driving without any noticeable delay. 

B. Online Path Planning 
A key component of the driving system is Junior’s online path 
planner. The path planner is responsible for tactical decisions 
such as lane changes, merging, and avoiding local obstacles. 
Its planning horizon is derived from the (minimum) maximum 
range of the range sensors.  
 
The path planner searches for appropriate paths along two 
dimensions: 

1. Discrete choices, such as lane changes and turns (the 
“macro-plan”), and 

2. Continuous choices, such as the specific lateral offset 
within a lane (the “micro-plan”). 

 
Each pair of macro- and micro-plan is evaluated using three 
scores: a local cost, a global cost, and a maneuver cost. The 
local cost evaluates the proposed vehicle trajectory given the 
local configuration of obstacles.  This cost estimates how fast 
this trajectory can be driven relative to its maximum speed 
limit. The global cost is the minimum value of the value 
function along the macro plan, as obtained via the dynamic 
programming method just described. This estimates the time 
required to reach the goal from the end of the local trajectory.  
Finally, the maneuver cost encodes the fact that certain 
maneuvers (such as lane changes and u-turns) are dangerous 
and thus should incur extra cost. For example, the vehicle 
should only change lanes if the difference in path cost exceeds 
the maneuver cost. Together, these criteria maximize progress 
while yielding stable, non-oscillatory behavior. 
  
The following image illustrates, in green, legal paths 
considered by the path planner.  
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Those trajectories are generated automatically from the local 
RNDF, with discrete changes of lateral offset relative to the 
lane center. 
 
Complex RNDFs can make for complex maneuvers. The 
present planner can accommodate arbitrary geometries and 
topologies of the road network, as illustrated in the following 
illustration. In particular, the robot only considers left or right 
turns when in the appropriate lanes. Thus, to turn left, it first 
needs to change lanes. 
 

 
 
The path planner considers objects found by Junior’s object 
tracker. The treatment for moving and static obstacles differs. 
Junior never considers swerving around moving obstacles; 
instead, its default response is to slow down. When facing a 
non-moving object, however, Junior modifies its cost function 
so as to favor paths that pass the obstacle. The following 
sequence of images illustrates a successful lane change 
maneuver for passing a stationary obstacle. It is important to 
note that while certain action choices, such as lane changes, 
are discrete in nature, the planner can modify these decisions 
at any point in time.  As a result, lane changes can be aborted 
immediately if a previously unseen hazard is revealed. These 
contingency plans can be seen in the second lane change 
image. 
 

 
 

 
 

 

 
Once a particular trajectory has benen chosen, Junior assigns 
to it the maximum permissible velocity. This velocity is 
calculated as the minimum of the MDF speed limits, 
constraints that arise from the curvature of the trajectory, and 
velocity that arises from maintaining a safety margin to other 
objects.  For each plan, Junior can construct all possible 
RNDF paths that merge or cross its planned path, respecting 
the rules of right-of-way.  The vehicle speed is set so that safe 
margins are maintained with other traffic that is allowed to 
merge or cross the given trajectory.  These merging and 
crossing zones are depicted in the previous images shaded in 
white. 
 

C. Parking Lot Navigation 
For parking lot navigation, the Stanford Racing Team has 
developed a multi-layer path planner that can generate 
unconstrained paths. These paths do not follow an RNDF, and 
they can involve multiple turns. The path planner operates fast 
enough to adapt the path to momentary range measurements, 
and past measurements are cached into a map so that obstacles 
are considered even when outside the momentary field of 
view of the vehicle: 
 

 
 
The blue area in the image corresponds to the local map, 
which is superimposed on aerial imagery. 
 
The parking lot path planner uses a combination of 3-D 
dynamic programming on a coarse grid, and the Rapidly-
Expanding Random Tree (RRT) algorithm. Trajectories are 
generated using a physical vehicle model with infinite tire 
stiffness. The breadth of possible paths is illustrated by the 
following example: 
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To guide this search, the value function in determining the 
goodness of a path is computed based on the distance to the 
goal (e.g., a parking spot), path smoothness, and clearance to 
obstacles. Under development is an extension that enables 
Junior to back up and drive backwards. The following image 
shows the directed search, in which the search tree is grown in 
response to a value function generated by the initial discrete 
value function calculation: 
 

 
 

A difficult situation is depicted in the following image, in 
which Junior navigates between two tight rows of obstacles.  
 

 
 
 

D. Control 
Junoir’s controller is adapted from Stanley, but has been 
enhanced significantly to directly control steering torque, 
instead of just steering angle (as was the case for Stanley). 
The controller has been tuned using reinforcement learning 
methods,. In experiments on an open airfield, Junior has 
successfully traveled at speeds up to 71mph. 
 

E. Stop signs and intersections 
To handle stop-signs and intersection, Junior analyzes the 
RNDF for intersection regions. According to the rules of the 
challenge, only one moving object is allowed inside the 
intersection at a time. The following diagram illustrates a 
typical marking of an intersection. Shown in orange here is a 
region that is marked for exclusive use. 
 

 
 

The actual logic for handling intersections combines a state 
machine that track the arrival and departure of vehicles that 
arrived first at the intersection, paired with a timer that 
overrides the state of waiting after a certain amount of time. 
To break ties, the wait time is randomized. In extensive 
simulations, we found randomized wait times to be uniformly 
superior to deterministic wait times, which can lead to 
collisions if two vehicles use identical timeouts. 
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VI. SAFETY AND DEVELOPMENT SUPPORT 
The current robot system features a system that enables a 
human driver to seamlessly switch between robotic and 
manual driving, simply by tapping the brake or by asserting a 
slight force on the steering wheel. A special software module 
monitors the health status of the software system and alerts the 
driver using the onboard stereo system, in case of possible 
irregularities. While such a system is not necessary for the 
final race, it is essential for driver and vehicle safety in the 
development phase. 

VII. STATE OF EXPERIMENTATION 
Some of the experimentation is carried out in simulation, or in 
combination of simulated and physical data. To this end, the 
Stanford Racing team has developed a multi-vehicle simulator 
that can be configured for arbitrary environment geometries 
and RNDFs. An example of a simulated parking lot is shown 
here—this specific example is derived from an actual parking 
lot, as indicated by the underlying aerial image. 
 

 
 
In simulation, we have been able to identify a number of 
possible failure modes. In particular, our Urban Challenge 
Simulator was used in Stanford CS224M Multi-agent 
Systems, a graduate course taught by Prof. Yoav Shoham. 
Students in this course were given the task of developing 
vehicle controllers to compete in a final competition—all 
based on what they learned about game theory in this class. 
Probably the most import outcome was that most vehicles 
quickly became stuck indefinitely, just by unanticipated 
reactions that departed from “typical” human driving. We are 
presently exploring the development of robust driving 
strategies that can cope even with misbehaving robots, while 
performing according to normal driving conventions and 
rules. 
 
Over the past months, much of our testing has involved 
physical vehicle operation. Vehicle testing, at this point, is 
carried out about once every week at Moffett Field. NASA 
Ames, who administers this air field, has graciously agreed to 
our use of their air field. Moffett Field possesses two runways, 
both approximately 2 miles long. The following image was 
taken during an experiment on Moffett Air Field: 
 

 
 

Stanford Campus is also used for physical vehicle 
experiments. In all experiments, the vehicle is staffed with a 
safety driver who can take over control simply by grabbing 
the steering wheel, and a technical officer who monitors the 
vehicle’s software. On Stanford Campus, Junior has passed a 
sequence of driving tests. The most difficult of those tests 
involved a 10-mile experiment in which Junior had to drive in 
traffic, line up at an intersection, stop at stop signs, and take 
several turns. All of these maneuvers were driven 
autonomously with one exception: the “resume” after a stop 
sign was triggered manually, for safety. Stanley passed this 
test, and exhibited robust localization, vehicle tracking 
planning, and control. Compared to the Stanley progress at 
this point in time, Junior is far ahead. 

VIII. OUTLOOK 
At present, the Stanford Racing Team is in its final push to 
bring together the end-to-end system with all necessary 
behaviors and capabilities. We anticipate that this important 
milestone will be achieved by April 30, 2007. From this point 
on, the Stanford Racing Team will freeze all working 
hardware and software modules, and engage in elaborate 
testing. Testing will commence throughout the summer, 
similar to the development path that led Stanley to success in 
the 2005 DARPA Grand Challenge.  
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