

 Approved for Public Release, Distribution Unlimited

1

Self-Regenerative Systems (SRS) Program Abstract
May 26, 2004

Lee Badger

This document presents the goals of the Self-Regenerative Systems (SRS) program, its
anticipated schedule, programmatic details, and short summaries of the projects in the
words of the SRS researchers.

BAA 03-44 released Sept. 29, 2003
Initial BAA closing: Nov. 26, 2003
Duration: 18 months
Selected performers: 11
Kickoff: July 20-21, 2004

Table 1 SRS Program Startup Details

The goal of the SRS program is to develop technology for building military computing
systems that provide critical functionality at all times, in spite of damage caused by
unintentional errors or attacks. All current systems suffer eventual failure due to the
accumulated effects of errors or attacks. The SRS program aims to develop technologies
enabling military systems to learn, regenerate themselves, and automatically improve
their ability to deliver critical services. If successful, self-regenerative systems will show
a positive trend in reliability, actually exceeding initial operating capability and
approaching a theoretical optimal performance level over long time intervals.

To achieve the SRS program goals, the program will address four key technology areas:
1) Biologically-Inspired Diversity, 2) Cognitive Immunity and Regeneration, 3) Granular,
Scalable Redundancy, and 4) Reasoning About Insider Threats.

The SRS program defines quantitative goals for each of these areas:

Biologically-Inspired Diversity: Metric: automatically produce 100 diverse but
functionally equivalent versions of a software component such that no more than
thirty-three versions of a component share the same deficiency.

Cognitive Immunity and Regeneration: Metric: accurately diagnose 10% of the root
causes of system problems and take effective corrective action in half of those
diagnoses.

Granular, Scalable Redundancy: Metric: attain a three-fold reduction in latency for
achieving consistency of replicated data while tolerating up to five Byzantine
failures in a centralized server setting and attain a fifteen-fold reduction in latency
for achieving consistent values of data shared among from one hundred to ten
thousand participants using epidemic algorithms, where all participants can send
and receive events.

Reasoning About Insider Threats: Metric: thwart or delay 10% of insider attacker
goals.

Performers will be responsible for assessing and measuring their own progress against
these goals and reporting the results to DARPA. In the Granular, Scalable Redundancy

 Approved for Public Release, Distribution Unlimited

2

area, this will include a testbed and baseline measurement at the first PI meeting. To
assist with this assessment, the program will include an Independent Evaluation Team
(IET). The IET will be comprised of subject matter experts in the four SRS technical
areas. The role of the IET will be to:

• Provide technical feedback to performers at PI meetings

• Attend site visits for in-depth reviews

• Review performer self-assessment strategies

IET membership so far:

Fred Schneider (Cornell)

Gregg Tally (McAfee Labs)

John McHugh (CMU)

Crispin Cowan (Crispin Cowan Security Consulting)

Stephanie Forrest (University of New Mexico)

SRS Kickoff
July 20-21 2004
Washington DC
2-day meeting
Present new projects
SRS architecture workshop

PI Meeting
Jan. 2005
East Coast Location
Redundancy Baselines Due
Present progress reports
SRS architecture workshop II
Insurmountable opportunities

PI Meeting
July 2005
East Coast Location
Preliminary project results
Challenge problems

PI Meeting
Jan. 2006
East Coast Location
Final project results

2004

2005

Site visits by the PM
IET

Figure 1 Preliminary SRS Roadmap

1. Biologically-Inspired Diversity
Conventional software systems are highly homogeneous; as a consequence, a single flaw
can be exploited by an adversary to cause massive damage throughout a military system.
In this technical area, the program will reduce the leverage available to adversaries by
generating many variants of a system component that perform the same desired functions
but are sufficiently different in their vulnerabilities so that a single attack can only
damage a small part of an entire system. Using this strategy, the program aims to reduce
the impact of any given attack and enable practical automatic recovery. If successful, the
strategy will multiply the attacker work factor.

1.1. Genesis
University of Virginia: J. C. Knight, J. W. Davidson, D. Evans, A. Nguyen-Tuong

 Approved for Public Release, Distribution Unlimited

3

Carnegie Mellon University: C. Wang

In the human genome, single nucleotide polymorphisms—single base differences in our
DNA— are believed to underlie our susceptibility to a host of diseases and our responses
to various treatments. We seek to reproduce the genetic diversity found in Nature by
deliberately and systematically introducing diversity in software components. The hope is
that while the phenotype of software components will be similar (its functional behavior),
its genotype will contain enough variations to protect the population against a broad class
of diseases (attacks, aging).

Similarly to Nature’s systematic use of evolution as its primary engine of diversity, we
will use a systematic and comprehensive methodology based on two fundamental and
complementary approaches, design diversity and data diversity, as our engine of software
diversity.

Design diversity is the creation of multiple implementations of a given specification such
that the different implementations have different designs. Data diversity is the use of
multiple copies of a single implementation with each copy operating on different input
data but yielding the same desired results. In data diversity, the different data streams are
produced by a process known as data re-expression. Each diversity approach will be
applied systematically at multiple levels of software representation to produce a spectrum
of techniques for the creation of diverse software components.

An innovative aspect of our work is the adoption of recent developments in compiler,
compiler-compiler and virtual machine technologies to effect both kinds of diversity
transformations. The results of applying design and data diversity techniques in
combination constitute Hierarchic Multi-Diversity—our comprehensive approach for
achieving the requisite quantitative and qualitative levels of diversification.

If we are successful, our research will result in a set of techniques and associated tools
that permit the creation of a large population of functionally-equivalent diversified
versions of components such that a significant fraction of the population does not share
the same vulnerabilities.

 Approved for Public Release, Distribution Unlimited

4

GENESIS: Software Diversity
New Ideas
• Comprehensive application of diversity

– Design & data diversity
– Dynamic diversity

• Hierarchic approach
– Transformations at multiple levels of

representations
• Automation

– Meta-compiler & compiler technologies
• Dynamic Virtual Machine

– Apply diversity at run-time via virtual
machine technology

University of Virginia: J. C. Knight, J. W. Davidson, D. Evans, A. Nguyen-Tuong
Carnegie Mellon University: C. Wang

Impact
• Demonstrate feasibility of large-scale

production of functionally-equivalent
software variants

• Reduced susceptibility of software
population to cyber threats

• Testbed for evaluation of diversity
techniques

• Demonstrate feasibility of dynamic
diversity technology on COTS

Schedule

Jul 04
Start

Jan 05 Jul 05 Jan 06

Design & impl. initial
data/design diversity
transformations

Design & impl. evaluation testbed
Additional data/design diversity
transformations

Prototype
demonstration

system

1.2. DAWSON -- Synthetic Diversity for Intrusion Tolerance
Global Infotek, Inc.: James Just

Affordable, robust systems that respond automatically to accidental and deliberate faults
are very desirable. The current state of the art combines fault- and intrusion-tolerance
technologies to produce robust, survivable systems. Such systems have an Achilles heel.
Their robust performance depends upon the continued existence of spare resources for
failover. Spare resources can be depleted by continued attacks until the system can no
longer maintain critical functionality.

The Diversity Algorithms for Worrisome Software and Networks (DAWSON) project
will develop prototype software that mitigates these problems for commercial off-the-
shelf (COTS) software through synthetic diversity introduced at the binary code level.
DAWSON’s approach randomizes critical information in the binary to alter the interface
and representation conventions in such a way that injected code no longer functions and
existing code is no longer reachable.

Breaking Vulnerability Specifications
The author of any computer attack focuses on specific vulnerability details such as
specific branching address locations and how to exploit them to point to his injected
code. The injected code must find and execute system calls to access system resources,
talk over the network, propagate further, etc. Such details can be viewed as a
Vulnerability Specification or V-SPEC from the perspective of the attacker. Any program
that supports the assumptions of the V-SPEC is vulnerable to that attack. This is
illustrated below.

 Approved for Public Release, Distribution Unlimited

5

Current
Attack

Problem

Software
Specification

Source
Code

Executable
Code

Machine-level
Code

Linker
Loader

Known
V-Spec

Attack

Machine Code
Specification

Vulnerability

Software
Specification

Source
Code

Executable
Code

Machine-level
Code

Linker
Loader

Known
V-Spec

Attack

Machine Code
Specification

Vulnerability

Our approach transforms programs in ways that break the V-SPEC, without affecting
legitimate assumptions about program behavior (the A-SPEC). For example, if random
sized blocks of information are pushed onto the stack to make stack locations harder to
predict, legitimate programs be affected by such things.

DAWSON Architecture
There are some transforms that are easy to perform on executable code with just the
loader. Others take more or less analysis at the binary or disassembled level. Still others
can only be accomplished if the source compiler has provided hints or annotations about
the executable. The DAWSON system architecture accommodates these differences and
is illustrated below.

Un-translation

Wrapper

Attacker

Other
System

Resources

Protocol
Stack

System
Monitor

Module Input

Transformer
Loader

Key
GeneratorKey

Original
Program

Policy

Modified
Loader

Transforms
Original

Program Code
and Generates

Wrapper to
translates

external calls

Some attacks fail
because assumed

vulnerability is gone

Other attacks fail
because injected
commands are

wrong

Response to normal inputs
are translated & untranslated

Diversity System Functional Architecture

Protocol
Proxy

Un-translation

Wrapper

Un-translation

Wrapper

Attacker

Other
System

Resources

Other
System

Resources

Protocol
Stack

Protocol
Stack

System
Monitor

Module Input

Transformer
Loader

Key
GeneratorKey

Original
Program

Policy

Modified
Loader

Transforms
Original

Program Code
and Generates

Wrapper to
translates

external calls

Some attacks fail
because assumed

vulnerability is gone

Other attacks fail
because injected
commands are

wrong

Response to normal inputs
are translated & untranslated

Diversity System Functional Architecture

Protocol
Proxy

Not shown in the above diagram is an offline analyzer above preprocesses the original
program code, e.g., uses linkage information in PE formatted executables and DLLs to
locate entry points, unresolved absolute addresses, and system call linkages. It then
generates an annotation file for each program. The Transformer-Loader module uses

 Approved for Public Release, Distribution Unlimited

6

these annotations, a key and policy to modify the loading program’s memory layout and
to build any needed wrappers to retranslate external calls.

The transformed program executes on the same hardware but has distinctly different
assumptions about its resources and interacting with its environment. Each load is
changed unpredictably based upon a random key.

Most attacks will fail because the assumed vulnerability location is different. Others will
fail because the injected commands do not find the system resource names they need.
With high probability, attacking code will simply fail and crash the process or endless
loop which increases the detection likelihood.

Research Products
The DAWSON project will deliver automated runtime diversity for software at the level
of component libraries, operating system calls, and protocol stacks for COTS computer
systems. Our implementation will focus on the world’s largest monoculture (Microsoft
Windows, Intel hardware, and Office/BackOffice applications) but the approach and
techniques developed will be applicable across the spectrum of other platforms.

Software Delivery Schedule

Diversity Algorithms for Worrisome
Software and Networks (DAWSON)

Technical Approach

Impact

Transformer

Original
Program

Analyzer

Policy Key
Generator

Key Transformed
Code

Wrapper

Loader

Annotation

Input

Input

Monitor Execution
Space

Execution
Space

DAWSON System Architecture Overview

Baseline Tasks
1. Requirement

Refinement

2. Pgm. Code
Diversity

3. Protocol
Diversity

4. Integration

5. T&E

6. Prog. Mgt.

• Prototype

Optional Task
- Self-Monitoring

FY04 FY05 FY06

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q2

1 2 3

• DAWSON will use randomized runtime
transformation of executable code

• Runtime transformation of binary code and
machine addresses and state space expansion
techniques

• Random cryptographic keys will rejuvenate the
code with unique transformations on each
restart.

• Policies can determine which type of transform
is favored.

• We will introduce spatial and temporal
diversity to common Windows applications,
the largest computer monoculture in the world.

• This current baseline of software and network
protocols turns over very slowly and
constitutes the bulk of security vulnerabilities
on extant Internet and military systems.

• DAWSON is a key enabler of fourth
generation, secure, survivable systems and will
be easily integrated with other SRS
components.

2. Cognitive Immunity and Self-Healing
Although some fault-tolerant systems perform automated error masking and recovery for
benign faults, no similar and effective capability exists for tolerating and recovering from
malicious attacks. In this technical area, the program will develop techniques that
introspect about a systems operation, that recognize damage resulting from successful
attack, and that reason about appropriate countermeasures. Through such techniques, the

 Approved for Public Release, Distribution Unlimited

7

program aims to build systems that automatically recover and regenerate their operational
capability, even in the face of continuing attack.

2.1. Learning and Repair Techniques for Self-Healing Systems
MIT: Michael Ernst and Martin Rinard

Today, computer systems remain brittle in the face of failures. Unlike biological
organisms, which can respond robustly to damage from internal errors and external
attacks by healing the damage and continuing to operate, computer systems lack
mechanisms that allow them to detect and repair damage and avoid similar problems in
the future. We propose to attack this problems with several technologies: an error
localization system that uses consistency constraints to localize errors; a repair system
that repairs the damage that the errors have caused; a learning system that dynamically
inspects the operation of the system to automatically learn important consistency
properties (these properties will then be used to drive the error localization and repair
system); an upgrade evaluation system that projects the impact of potential software
upgrades on the system (enabling it to reject potentially harmful upgrades and integrate
useful upgrades); and an automatic mode selection mechanism that matches the operating
mode of the system to the demands of the environment in which it finds itself (thus
enabling the system to better survive unpredictable combinations of attacks, damage, and
environments).

Deliverables
The deliverables for this project fall into three broad categories. First are a set of common
tools and languages that will be used throughout the project, tying together the research
thrusts and enabling them to work together synergistically. Second is a set of specialized
tools that build on this common foundation to achieve each research objective, together
with additional integration of these tools. Third is a set of experimental results that
evaluate both the novel techniques that we propose, and also our prototype
implementations; these experiments will point the way to future research and practical
application. The foundational tools include: (1) a common consistency specification
language that will be used by all the tools and that is capable of expressing correctness
requirements of software system, (2) a prototype implementation of an algorithm that
detections violations of the constraints, and (3) a system for automatically inferring
constraints (a form of specification) for an arbitrary program. Together, these tools
enable use of arbitrary code in our experiments without requiring humans to perform
tedious, error-prone, and ad hoc specification tasks. The specialized tools include
prototype implementations of algorithms that: (1) localize information representation
corruption errors to specific regions of code, (2) automatically repair corruption in a
manner consistent with all other constraints, (3) evaluate whether a particular upgrade is
likely to cause errors if integrated into a particular system, and (4) select an appropriate
operating mode for a system with such modes. The integration efforts will combine (1)
the learning, localization, and repair tools to automatically create self-healing systems
that recover from certain corruption errors, (2) the localization and upgrade evaluation
tools to predict impact of upgrades on specific parts of a codebase, in particular for
correcting specific existing errors, and (3) the localization and mode selection tools to
select different operating modes that work around errors in specific modes. The

 Approved for Public Release, Distribution Unlimited

8

experimental results will evaluate each of the above tools and integrated systems on a
variety of systems, including the CTAS air-traffic control system (deployed in 7 of 21
air-traffic control centers in the continental United States), the Linux C standard library,
competition robots from MIT, free software such as the Freeciv interactive game, and
other software systems.

Learning and Repair Techniques for Self-Healing Systems

Martin Rinard, Michael Ernst, MIT Laboratory for Computer Science

Basic Idea
• Learn data structure consistency properties

• Observe system during known correct executions
• Extract properties that correct data structures satisfy

• Learned properties drive inconsistency localization/repair
• Automatic inconsistency localization

• Inspect data structures to find broken regions
• Localize broken region and responsible code

• Automatic repair
• Find properties that broken region violates
• Synthesize repair actions to fix violated properties
• Use planning to find minimal-change repairs

Impact
• Broken data structures have many causes

• External attacks, Internal errors
• Unexpected operating conditions

• Broken data structures can have severe consequences
• Catastrophic failure
• Security breaches and compromised systems

• Our techniques promise to
• Enable detection and healing of data structure damage
• Make systems more robust, reliable, and secure
• Help systems continue to operate successfully through attacks,

failures, and errors

Accomplishments and Status
• Program not yet started
• Components in various stages of development

• Data structure consistency property learning
• Inconsistency localization
• Inconsistency repair

Broken Data
Structure

With Repair,
Continues to

Operate

Without Repair, Dies From
Incorrect Or Impaired

ExecutionDead
Operational

2.2. Pervasive Self-Regeneration through Concurrent Model-
Based Execution

MIT: Brian Williams, Gregory T. Sullivan

1. Pervasive system robustness by composing concurrent fault aware processes.
In open systems, failures can occur within any subsystem, process or component of
the system, not just at its perimeter. To achieve robustness for open systems, we will
enable every process to be fault aware, by recognizing and adapting to failure. In
contrast to traditional, centralized approaches, our approach will support fault-aware
processes that operate concurrently while communicating across a network, and that
operate through a layered architecture within a single process.

2. Fault-adaptive processes through model-based program execution.
To achieve robustness pervasively, fault adaptive processes must be created with
minimal programming overhead. Model-based programming elevates this task to the
specification of the intended state evolutions of each process. A model-based
executive automatically synthesizes fault adaptive processes for achieving these state
evolutions by reasoning from models of correct and faulty behavior of supporting
service components. This synthesis includes methods for transitioning to intended

 Approved for Public Release, Distribution Unlimited

9

states, monitoring progress, diagnosing failure, and repairing or reconfiguring
underlying components. Furthermore, the model-based executive can construct novel
recovery actions in the face of novel faults.

3. Self-deprecating methods through prognostic mode estimation.
As with traditional languages, model-based programs are specified in terms of a set of
methods and method invocations. Execution of these methods will fail if the service
components they rely upon irreparably fail. Model-based execution will enhance
robustness by continuously deprecating any method that is involved in the current
execution plan and whose successful execution relies upon an irreparable component.

4. Self-regenerating methods through redundant method dispatch.
 When a method is deprecated, the model-based executive will attempt to regenerate
the lost function that caused the method deprecation by reasoning about its service
component models in order to repair or reconfigure the faulty services. To handle the
event of permanent method deprecation, a model-based program includes a
specification of redundant methods for achieving each desired function. If a
deprecated method cannot be repaired, the desired functionality is regenerated
dynamically by choosing a suitable redundant method and verifying correct function.

5. Self-optimizing methods through decision-theoretic dispatch.
In addition to failure, component performance can degrade dramatically, reducing
system performance to unacceptable levels. To maintain optimal performance,
decision-theoretic method dispatch will continuously monitor performance, and select
the currently optimal available method that achieves the desired function.

6. Safe fault adaptation through method dispatch as continuous planning
Failures can occur at any moment and can have a disastrous effect if not immediately
caught. Our approach will continuously monitor failure and performance
degradation, and will reactively invoke its regeneration processes as required.

7. Incorporation of fault adaptation incrementally.
Improving robustness of large, legacy systems must be a gradual process, whose cost
can be amortized over time. Our approach allows us to add robustness to individual
software components, thus incrementally increasing the robustness of the overall
system.

 Approved for Public Release, Distribution Unlimited

10

MIT CSAIL, Brian Williams, DARPA SRS, May 2004

Pervasive Self-Regeneration through
Concurrent Model-Based Execution

Concurrent Model-based executives: monitor,
predict, diagnose, replan, to keep software systems
running and achieving goals.

Model-based Programming: high-level, probabilistic,
goal-driven specification of intended, nominal, and off-
nominal behavior.

Decision-theoretic dispatch: select from redundant
methods based on reliability, performance, reward.

Self-deprecation and repair: deprecate methods
based on failed dependencies. Schedule repair based
on value.

2.3. Architectural Differencing, Wrappers, Diagnosis, Recovery,
Adaptivity, and Trust Modeling (AWDRAT)

MIT: Howie Shrobe
Teknowledge: Bob Balzer

We are building an infrastructure, named AWDRAT, that helps software systems respond
in reasonable ways to compromises of the resources, avoiding them if the compromise
would cause serious harm, but using them in pursuit of important goals if they can be
employed without fear of damaging properties of interest.

Software hosted within the AWDRAT environment must be structured as variant
methods capable of rendering common services, allowing AWDRAT the freedom to
select the best method for achieving the task. When there are multiple resources that are
more or less equivalent, AWDRAT has the freedom to choose between them. The
AWDRAT decision cycle is:

• When presented with a task to be achieved, AWDRAT consults its method library,
finding all applicable methods relevant to the service request. Each combination of
method and supporting resources is evaluated, taking into account the cost of the
resources and the value of the service quality delivered. AWDRAT’s trust model is also
consulted to assess the possibility that the resources are compromised and to include the
cost of a potential failure. The method and set of resources that promise the best overall
tradeoff is selected for execution.

 Approved for Public Release, Distribution Unlimited

11

• Accompanying each method is an architectural model of the computation performed by
the method. AWDRAT interprets this in parallel with the executing code, using wrappers
to extract data from the method’s execution and noting when the executing code violates
a constraint of the architectural model. This technique is called Architectural
Differencing. If any constraint imposed by the architectural model is violated, model-
based diagnosis is invoked to assess what part of the computation may have failed and
the trust model is updated with the information produced by the diagnosis, leading to new
assessments of the trustability of the computational resources.

• Recoverable data (e.g. databases, code segments, password files) are restored in order to
establish a consistent point from which to resume the computation. AWDRAT then
returns to the beginning of its decison cycle, informed by the results of diagnosis. It
restarts the computation from a place guaranteed to have been successfully completed
and chooses a new method and set of resources in light of the updated trust model.

This approach guarantees that AWDRAT will find some way to achieve the application’s
goals if there is an available method; it also guarantees that it will steer the application
clear of resources that it has reason to believe are corrupted if the compromise to the
resources is likely to cause damage. The application system behaves adaptively when
hosted within the AWDRAT environment.

Deliverables
We will develop and deliver a prototype of the AWDRAT environment that includes the
following:

• A trust model that assesses the likelihood that each computational resource is
compromised in a specific way and thereby implies for what purposes the component
may be used reliably.
• An infrastructure to support self-adaptive application systems. Such systems will
dynamically decide how best to achieve each goal in light of current conditions, in
particular, in light of the trust model.
• A system modeling framework that allows AWDRAT to operationalize the
specifications of an application in terms of conditions expected to hold at particular
points and invariants that must be true across intervals of the computation.
• A synthesis system that automatically generates wrappers such that the important state
of the computation is observable and such that redundant copies of critical data can be
automatically provisioned.
• A diagnostic component that is activated by the detection of a symptom (i.e. the failure
of a computational component to behave in accordance with its specification) by some
wrapper. The diagnostic component then determines what failures may have led to the
observed symptom, whether this failure is indicative of a compromised resource, what the
cause of this compromise is likely to have been. The diagnostic component updates the
trust model to reflect its conclusions.
• A recovery component that operates after the diagnostic component has assessed the
cause of the failure. The recovery component is responsible for restoring corrupted data
sets to a usably consistent state and for the selecting of a suitable method for achieving
the application’s goals, given the updated beliefs in the trust model.

 Approved for Public Release, Distribution Unlimited

12

• An attack modeling capability that discovers, models and recognizes attack plans
intended to compromise the system’s resources.

AWDRAT (Architectural-Differencing, Wrappers,
Diagnosis, Recovery, Adaptivity and Trust-Management)

Howie Shrobe(MIT) and Bob Balzer(Teknowledge)

• Provides “cognitive immunity” to
both intentional and accidental
compromises

• Applications actively check that their
behavior is consistent with their
goals

• Applications use a trust model to make
rational choices about resource usage.

• Model intended application behavior, and
use the models to:

• Block harmful actions by using
dynamic wrappers and architectural
differencing.

• Diagnose unintended behavior
• Recognize and Preserve critical data

New Ideas

Impact Schedule

0 6 12 18 24 30
Months

System Architecture

Trust Models

Self Adaptive Infrastructure

System Modeling & diagnosis

Recovery from failure

Example Application

Recovery from failure

Example Application

2.4. Cortex
Honeywell: David Musliner

Cortex is based on the proposition that both success and security are defined by the
computing mission, and that the computing mission changes over time. Therefore, only
mission-aware automation can effectively manage critical systems under attack. Cortex
will actively monitor and reconfigure a computing network to continuously optimize its
performance of a computing mission. Cortex will use its awareness of its own resources,
the changing character of the threat, and the changing demands of the mission, to
maintain a dynamic balance between security and mission performance. Cortex will plan
for contingencies; detect and classify threats as they occur; execute real-time responses to
restore mission-critical services; and learn how to improve over time. The Cortex
approach to reliable, self-regenerative systems will provide major benefits for mission-
critical applications, including improved mission effectiveness, increased survivability,
reduced resource margin requirements, and reduced overall cost. Cortex will provide
these user benefits by combining three innovative capabilities:

 - Scalable Coherent State Estimation: Cortex will use highly scalable qualitative
probabilistic algorithms to combine the noisy, uncertain outputs from numerous system

 Approved for Public Release, Distribution Unlimited

13

sensors into an accurate and coherent estimate of system state. Using its built-in model of
the system's computing mission, Cortex will diagnose the root cause of system problems
and assess their potential mission impact, to guide tailored, optimized responses.

 - Mission-Optimized Planning and Response: Cortex will use cognitively-inspired
mission-aware planning algorithms to derive proactive response plans that optimize the
system's mission performance during disruptions and attacks. Cortex will respond to
100% of the diagnosed attacks and faults. Furthermore, the planning algorithms will run
online to continuously improve the system's resource allocation and response strategies,
providing both self-regenerative and self-optimizing behaviors in a unified planning
framework.

 - On-line Learning: Cortex will begin operations with models of the computing system it
controls, its mission, and the faults and attacks that may disturb it. Over time, Cortex will
use statistical and structural learning algorithms to continually refine those models,
improving the accuracy of its self-awareness and mission-awareness. Cortex will also use
active probing to proactively self-test, self-diagnose, and automatically protect against
potential faults and vulnerabilities, continually improving its robustness and security
through self-discovery.

The Cortex concept builds on Honeywell's extensive prior experience in cyber security,
fault tolerant systems, and cognitive systems, including Scyllarus and Circadia. With
significant technical advances in mission-awareness, scalability, and continuous learning,
Cortex will incorporate all of our experience into a unified self-regenerative system that
will exceed DARPA's success criteria for cognitive immunity and self-healing.

Cortex will be demonstrated in increasingly complex scenarios at nine-month intervals.
The demonstrations will be performed in Honeywell's Cyber Security Lab facility, using
networks of computers performing simulated mission-critical computing tasks under a
variety of attack, failure, response, and recovery scenarios.

 Approved for Public Release, Distribution Unlimited

14

~circadia/talks/quadchart-cortex-5-19-04 1

SCHEDULE

CORTEX – Mission-Aware Closed-Loop Cyber Assessment and Response

• System Reference Model drives intrusion
assessment, diagnosis, and response.
• Automatically search for response policies that
optimize tradeoff of security against mission ops.
• “Taste-tester” server redundancy supports
robustness and learning from new attacks.

• High confidence intrusion
assessment and diagnosis.
• Pre-planned automatic responses to
contain and recover from faults and
attacks.
• Automatic tradeoffs of security vs.
service level & accessibility.
• Learns to recognize and defeat novel
attacks.

Computing
services

Active Security Controller
Executive

Controller Synthesis Module
Networks,
Computers

Attacks,
intrusions

IMPACT

NEW IDEAS

JUL 04

Security Tradeoff Planner

Demos: Thin
slice
demo

MAR 05 DEC 05

Monitor, plan
react, learn

DEC 06

Integrated
with other

SRS results

Scyllarus
Intrusion

Assessment

3. Granular, Scalable Redundancy
Self-regenerative systems must operate even when damaged. Today, the keystone
technique for doing this is to maintain multiple copies of selected system components
and, if an attack damages some, to dynamically switch to using other, undamaged
components. This technique imposes stringent coordination requirements on system
components: these requirements may degrade performance to unacceptable levels. In this
technical area, the program aims to develop new techniques that allow the necessary
coordination to occur but with levels of performance that are needed by high-
performance military systems.

3.1. Scalability, Accountability and Instant Information Access
for Network-Centric Warfare

Johns Hopkins University: Dr. Yair Amir
Purdue University Subcontract: Dr. Cristina Nita-Rotaru

Network-centric warfare calls for survivable command control communication and
intelligence (C3I) systems that are resilient to a broad range of attacks. The focus of this
project is to construct a realistic solution for the broad malicious attack problem where
part of the C3I system is compromised.

The project targets three main limitations with current solutions: they are not scalable to
high latency wide area networks underlying C3I systems; they have no protection against
malicious clients providing incorrect input that is within their authority; and they often

 Approved for Public Release, Distribution Unlimited

15

unnecessarily delay applying updates, withholding important information from clients
until updates can be globally ordered.

From a research perspective, there is a broad class of distributed data management
applications based on replication infrastructure. This project takes the C3I problem as a
representative example of this broader class.

The key innovations of our approach include:

• Scalable wide-area intrusion-tolerant architecture: By inventing a hierarchical
approach in which Byzantine replication is used locally in each site, and efficient
fault tolerant replication is used on the wide area network, we overcome the strong
connectivity requirements and multiple all-peer exchanges of current Byzantine
replication solutions. Symmetric Byzantine replication in conjunction with threshold
cryptography is used in each site to create one logical trusted entity, over which the
non-malicious tolerant replication can be safely used. The effects of malicious server
replicas are then confined to the local site.

• Accountability for updates: Once bad data is discovered, we identify the client that
injected it and quickly mark corrupted and suspected data. We can then backtrack and
regenerate the C3I state based on non-corrupted and/or non-suspected data, and
identify the extent of potential damage. Accountability for updates also provides
protection against a complete site compromise, enabling a reduction in the number of
replicas for a slightly higher risk and better performance.

• Instant Information Access: Our architecture propagates updates to other sites as soon
as network connectivity exists and exploits commutative update semantics to
efficiently make update effects available immediately. In contrast, Byzantine
replication solutions may only provide access to the effects of updates that are
globally ordered on the wide area network.

The resulting system will have considerably better performance and much higher
availability then existing symmetric solutions and offer a clear path for technology
transition.

 Approved for Public Release, Distribution Unlimited

16

Impact

New ideas

Scalability, Accountability and Instant Information Access for
Network-Centric Warfare

Schedule
Resulting systems with at least 3 times
higher throughput, lower latency and high
availability for updates over wide area
networks.

Clear path for technology transitions into
Military C3I systems such as the Army
Future Combat System.

http://www.cnds.jhu.edu/funding/srs/

June
04

Dec
04

June
05

Dec
05

C3I model, baseline
and demo

Component
analysis &
design

Component
Implement.

System
integration &
evaluation

Final C3I demo
and baseline eval

First scalable wide-area intrusion-tolerant
replication architecture.

Providing accountability for authorized but
malicious client updates.

Exploiting update semantics to provide
instant and consistent information access.

Johns Hopkins University & Purdue University

Comp.
eval.

3.2. Increasing Intrusion Tolerance via Scalable Redundancy
CMU: M. K. Reiter G. R. Ganger P. Narasimhan A. Ailamaki C. Cranor

We propose to dramatically increase the scalability of fault- and intrusion-tolerant
services, particularly in the efficiency of tolerating significant numbers of failures and
compromises. Specifically, we will push the state-of-the-art in at least the following
ways.

1. We will develop novel protocols for distributed data storage that offer linearizable data
access, wait-free liveness, tolerance of Byzantine client and server failures (corruptions),
and far superior latency and throughput as the system scales. Relative to the state-of-the-
art, our protocols will yield at least a threefold improvement in access latency, even for
relatively small numbers of servers, and this gap will grow as the number of servers
increase. Simultaneously, they will at least double the throughput achieved by the current
state-of-the-art, again even for relatively small server configurations, and will scale better
as the system grows.

2. We will develop protocols for highly-resilient distributed object-based systems that
offer linearizable method invocations, including nested invocations in which one object is
invoked by another, where some replicas of each may be corrupt. The result will be
unprecedented support for general intrusion-tolerant service construction. Our protocols
will strive for sublinear growth in access cost as the number of object replicas grows, as
compared to the linear-or-worse access costs offered by existing approaches.

 Approved for Public Release, Distribution Unlimited

17

3. We will develop specialized protocols for important object types (e.g., directories and
indices) that improve upon the scalability of general object mechanisms by exploiting the
best features of both protocol families described above. Such specialization reduces costs
to those required for the needed functionality.

This project seeks to conquer a fundamental limitation of prior techniques: the need to
synchronize all servers’ states, which severely restricts a service’s ability to scale. While
the need to coordinate server state is to some extent unavoidable, in order to ensure
consistent service semantics, we will significantly improve on the state-of-the-art via
novel applications of techniques from other domains: shifting load from servers to
clients; eliminating the need for all servers to process all service invocations; and using
versioning (non-destructive updates) at servers to avoid the need to order updates
proactively.

The breadth of services types we consider—ranging from read-write data storage to
arbitrary object computations—allows our results to be applied to implementations
specialized to the needs of a particular system. This breadth also introduces challenges on
several fronts. For example, the distinction between read-write objects and more complex
ones fundamentally changes the consistency and liveness properties that can be achieved
when implementing them, and the associated performance costs. As another example, an
object-oriented approach introduces the possibility of one object being invoked from
another, which magnifies a corrupt object replica into a corrupt client for another object.

Carnegie Mellon: M. K. Reiter G. R. Ganger P. Narasimhan A. Ailamaki C. Cranor

Increasing Intrusion Tolerance via Scalable Redundancy

Impact
Significantly more scalable techniques
for survivable services

Order of magnitude improvement in numbers
of clients supported, faults tolerated

Will provide basis for more robust critical
infrastructures

data storage, file systems, object apps

Schedule

Approach
Apply techniques in novel ways to
build scalable, survivable services

Shift load from servers to clients
Eliminate need for all servers to process
all service invocations
Versioning (non-destructive updates)

Protocol family for range of models
and service types

Read/write data services

Structured data types

Arbitrary objects

start start +
6 mos.

• Client fault model
• Timing model

• Server fault model
• Client repair model

Protocol
member

Standard
storage-nodes

Encoding params,
Data fragments

+

ClientData

Fixed Interface

start +
12 mos.

start +
18 mos.

 Approved for Public Release, Distribution Unlimited

18

3.3. Quicksilver
Cornell: Profs K. Birman, P. Francis and J. Gehrke
Raytheon: Dr. L. DiPalma and P. Work

A wave of “network centric warfare” (NCW) applications are in the planning stages.
Unfortunately, off-the-shelf commercial products are difficult to deploy when scaled to
very large environments, costly to administer, perform poorly under stress, and lack
capabilities required of applications that may need to withstand problems ranging from
mundane mishaps to attacks. Our effort brings together a unique alliance to build a new
generation of technologies tyo bridge the gap. The QuickSilver will support adaptive,
self-repairing, self-managed applications where scalability and robustness are central
requirements.

This work targets two categories of applications: network centric warfare applications,
and lightweight sensor systems, in which small devices are scattered in a theatre of
operations and must organize themselves to provide useful data to military strategists and
commanders. But the needs seen in these settings also occur in many other government
and commercial systems. Progress will lead to improvements of the commercial
technology base and will benefit many kinds of users.

QuickSilver will work within emerging standards to the greatest degree possible. The
development effort is focused on extending the Web Services architecture with
functionality missing in today’s products. This approach will let developers leverage the
power of broadly accepted commercial solutions while also gaining the assurance
properties required in demanding settings.

Our effort is informed by years of close collaboration and dialog between Cornell
researchers and the Joint Battlespace Infosphere (JBI) team at Air Force Research
Laboratory in Rome New York. Raytheon team members point to decades of activity
directed towards a wide range of military problems, with a current emphasis on issues
seen in Navy Surface and Underwater Sensors and systems.

Our group has a strong track record of technology transfer. For example, work Cornell
did as part of the Hiper-D program back in 1989 came to play a critical role in the
onboard systems for the AEGIS warship, and also transitioned into the New York and
Swiss Stock Exchanges, the French Air Traffic Control system, and other many projects.
Today, we maintain a close dialog with companies like Microsoft and IBM, and with
demanding application developers at companies like Amazon.com. This rich network of
connections should keep QuickSilver focused on the right problems and help with
technology transition when we reach that stage.

 Approved for Public Release, Distribution Unlimited

19

QuickSilver: Middleware for Scalable Self-Regenerative Systems

Impact
* QuickSilver will enable rapid progress on global information grid
platforms and applications, such as the Air Force JBI.

* The system brings a new probabilistic style of state capture and
diagnosis to bear on the challenges of deployment and management
of large-scale applications

* A Raytheon-led component effort is focused on dialog with real
users in the Air Force and Navy

* The technology base will enable dramatic progress in some of the
most demanding military settings we face, while also benefitting
civilian developers of critical infrastructure applications

Cornell University: K. Birman (PI), P. Francis, J. Gehrke, R. VanRenesse, W. Vogels. Raytheon: L. DiPalma, P. Work

2004 2005

Complete a phase-0 system that includes components from

our prior DARPA work as well as new technology for

integrating thee into a powerful new platform

Transfer technology

W
orking with Raytheon, apply QuickSilver to target

military applications. Continue work on platform

Completion of the initial 18-monh effort.

If funded, follow-on 12-month activity

tackles real-time and other “QoS”

challenges. If funded, Raytheon takes lead in

Phase-II production build and deployment.

Initial architectural design completed

2006

Innovative Technologies for Building
Adaptive, Self-Repairing

Global Information Grid Applications

QuickSilver Ideas
* Augment Web Services architecture with missing technology
components to support robust, scalable GIG applications

* QuickSilver uses probabilistic techniques to dynamically sense
distributed system state, automate configuration and adatation
under stress, and repair damage after a failure or disruption.

* Incorporates “best of breed” solutions from prior DARPA work.
Epidemic gossip protocols are robust against denial of service
attacks that cripple conventional networks and applications.

* Potential for revolutionary advances in tools for building and
managing large, complex distributed systems, and for securing them

4. Reasoning about the Insider Threat
Even if a military information system functions perfectly, a malicious operator is “inside”
the system and can subvert a mission by giving the wrong command at a critical juncture.
In this technical area, the program will develop technology allowing a system to estimate
the likelihood that a military system operator will become malicious. While it is
probably not possible to achieve 100% accuracy in such an estimate, progress in this area
is critical to safeguarding deployed military systems, and can also serve as a deterrent to
military system operators that might consider an inside attack.

4.1. Detecting and Preventing Misuse of Privilege
Teknowledge: Bob Balzer
MIT: Howie Shrobe

Project Description
The project assumes that the insider has all the access, privileges, and knowledge

needed for an attack and focuses on detecting the malicious behavior required to mount
that attack. This detection will be based on a unique set of sensors that monitor military
user actions and an advanced malicious behavior detector that analyzes the military user
history relative to a role-based model of expected behavior. This model will identify both
the types of behavior expected in a situation and the means for assessing the
appropriateness of the particular behavior observed. The assessment will use a wide
variety of mechanisms for determining the appropriateness of an action such as safety
models, “plant” models, design rules, best practices, and heuristics. This analyzer will
detect both intentional and accidental actions that harm the system. A suspicious behavior

 Approved for Public Release, Distribution Unlimited

20

detector will differentiate the two by inferring user goals from the behavior and
identifying the set of plans consistent with that behavior.

Two unique capabilities result from detecting attacks based on model-based predicted
harm (about to be) caused to a system:

1. There is no need to update the defense as new insider attacks are discovered or
new ways to obfuscate them are invented

2. Attacks based on corrupted operand values or the situation in which operations are
invoked can be detected and blocked.

Deliverables
Misuse Detection Architecture: a generic architecture for monitoring operator

behavior in military legacy systems at the level of application-specific commands or
directives invoked by the operator, for matching that behavior against role-based plans,
for modeling the effect of those commands or directives on the state of the legacy system,
for assessing the benefit or harm of those effects, and for matching those effects and
assessments against a set of insider attacks.

Operator Behavior Monitor: a component that mediates the communication
between a legacy system’s GUI and the system itself to extract the application level
commands or directives initiated by the user/operator through that GUI so that they can
be screened for harmful effects before being processed by the legacy system.

Matching Operator Behavior against Role-Based Plans: a component that
compares operator behavior traces to behavior traces from operator and attack plans.

Operational System Model: an operational system model for a legacy application -
initially constructed from propositional rules – from which both the predicted state of the
system, and the likelihood of harm resulting from the change of state can be predicted.

Malicious Behavior Detector: a suspicious behavior detector that differentiates
between accidents and malicious behavior by inferring user goals from the observed
harmful behavior, recent historical behaviors, and the set of plans consistent with the
larger behavior context.

 Approved for Public Release, Distribution Unlimited

21

Behavior
Authorizer

M

M

M

M

Mediation Cocoon

Legacy
App

Behavior
Monitor

Operator
Action

Operational
System
Model Predicted

State

Harm
Assessment

Benign
Operator
Action

Harmful
Operator
Action

GUI

Intent
Assessment

Operator
Error

Malicious
Insider

Detecting and Preventing Misuse of Privilege
Bob Balzer(Teknowledge) and Howie Shrobe(MIT)

• Harmful actions blocked before
damage inflicted

• Defenses don’t need to be updated
for new (zero-day) insider attacks
or obfuscation techniques

• Insider attacks can be differentiated
from operator error

• Monitor Military User/Operator Actions
• Predict effect of user/operator action by

applying it to operational system model
• Block harmful actions
• Assess intent of harmful actions to

differentiate operator error from
malicious insider

New Ideas

Impact Schedule

Base Task

Option

0 3 6 9 12 15 18 21 24 27 30

Develop Initial
Operation Model

Months after Project Start

Detect & Block Insider Attacks
within Legacy Testbed system

Detect & Block Insider Attacks
within Legacy Mission-Critical system

Instrument Mission
Critical System

Detect & Block
Exfiltration Attacks

Detect & Block Resource Control
Attacks from within Attacker Software

Detect & Block
Scripting Attacks
from within
Attacker Software

4.2. Mitigating the Insider Threat using High-dimensional Search
and Modeling

Telcordia: Eric Van Den Berg
Rutgers: Raj Rajagopalan

Insider attacks cause over 70% of today’s security breaches and often go undetected for
long periods of time. Existing security technologies such as firewalls or Intrusion
Detection Systems (IDS) do not provide adequate defenses against insider threats because
they are oriented towards attacks originating from outside the enterprise. Unfortunately,
insider attacks may begin from any of numerous potential attack points in the enterprise
and have too many parameters to be monitored that existing systems cannot handle. Some
existing technologies depend on an exact match of a known attack pattern (a “signature”)
and cannot detect even slight variations of those attacks. Others can detect anomalies in
monitored statistics but cannot deal with a large number of attributes due to the problem
of high dimensionality. We propose to build a system that can efficiently detect
anomalies in high dimensional state spaces and that, by inferring attacker goals and
targets, synthesizes appropriate pro-active responses to protect (correct spacing)critical
services while minimizing collateral damage. We propose to achieve this goal with a
series of steps and components outlined below:

• Collect data from numerous diverse sensors monitoring various layers of the military
information system from physical to network layer to application layer and end-host
sensors, making it very hard for any suspicious insider behavior to avoid triggering some
sensor alerts. We will deliver a design document and prototype software for the sensors.

 Approved for Public Release, Distribution Unlimited

22

• A network history repository, which contains historical states of the system that are
annotated with attack and precursor information. We will deliver a design document and
prototype of a network state description language in terms of collected sensor data.

• A high-dimensional search engine operating on the network history repository, that is
based on dimension reduction techniques such as Singular Value Decomposition (SVD).
Given the current state of a large network, the search engine will create a ranked “Top K”
list of annotated states that are all “similar” to this state. The search engine detects insider
threats by creating clusters of “similar” states in a high dimensional space, which
represent previously seen threat states or their precursors. Extrapolating from our
experience, this engine will be able to detect, within minutes, over 40% of insider threats
in large networks. We will deliver a design document and proof-of-concept prototype
software for the search engine.

• A graph-based insider threat modeling and analysis tool, which identifies potential
insider attack points and attack scenarios in a network by modeling the effort required to
acquire knowledge of internal details, and provides the required “experience” for the pre-
attack training phase. This helps reduce noise in data and prune the size and number of
clusters. SUNY Buffalo will deliver an initial prototype for this tool.

• A response engine, which performs an impact analysis of the potential attack on critical
services and automatically synthesizes a response that minimizes collateral damage,
thwarting the predicted attack within minutes. We will deliver a design document and
proof-of-concept prototype of the response engine. If the project is successful, we expect
to be able to transition the research results and (close up spacing)technology to interested
DoD customers. An additional side effect of the success of this project may be a
breakthrough in the ongoing war against multi-dimensional virus-borne attacks.

New Ideas
Network State description based on large sensor network,

monitoring services and devices at multiple layers
Search Engine approach for detection of anomalies and known

(insider) attacks, which overcomes dimensionality problem limiting
current methods
Static identification of potential attack points and insider attack

scenarios in a network, using Insider Modeler and Analyzer (SUNY
Buffalo)
Analyze impact of detected attack, leveraging logical Response

Engine to synthesize possible reconfigurations and their side-effects

Mitigating the Insider Threat using High-dimensional Search and Modeling

Impact
New high dimensional Anomaly Detection System, which scales

to large, internet size networks
Extrapolating from our experience, we expect the system to

detect over 40% of insider threats in large networks
Thwart insider attacks quickly, leveraging logical Response

Engine, to protect critical services and minimize side-effects
Transfer the research results to interested customers for

immediate use once the approach has been validated

Schedule & Deliverables
•Q1, Q2: Design sensors, Network State description, Search Engine
and Response Engine; Deliverable: Design document
•Q3, Q4: Develop prototype Sensor Network, Translator, Search
Engine, Response Engine and Insider Modeler and Analyzer;
Deliverable: Prototype software
•Q5, Q6: Experimentation: Test-bed construction, experiment design,
experiment execution. Deliverables: Methodology document,
Experiment Report and Demonstration
•Final deliverable: Final Report
We will further provide demonstrations where possible, and any
publications resulting from this research

