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Introduction 
 

The goal of the BICA program is to produce flexible systems that capture the power of human 
cognition – systems that can both adapt to new environments and be tasked with new instructions 
without reprogramming.   To achieve that goal we are bringing together ACT-R, a high 
functionality architecture, that already performs well on the goal of taskability, with Leabra, a 
high neural-fidelity architecture, that already performs well on adapting to new environments.   
The following are examples of high-end applications of ACT-R: 

1. A system that can take instruction for a new domain of mathematics and reproduce 
student behavior (including brain imaging data) with no special programming. 

2. A MOUT (Military Operations in Urban Terrain) system that simulates soldiers 
navigating in urban terrain and executing USMC combat doctrine while remaining 
adaptive to environment and opponent actions. 

3. A driving model that can drive a car (in a simulator) and predict the degradation on 
performance that occurs when devices like cell phones or GPS systems are introduced. 

 
The following are examples of high-end applications of Leabra: 

1. A model of the visual neural pathways supporting object recognition, that learns to 
recognize objects despite wide variations in size, location, orientation, and context, 
performing at state-of-the-art levels based solely on existing general-purpose Leabra 
learning mechanisms. 

2. A model of the prefrontal cortex and basal ganglia that can learn a wide range of complex 
working memory and cognitive control tasks based on trial and error learning, without 
any task-specific pre-configuration. 

3. A model of the hippocampus and neocortex that can account for learning and memory 
data from over 20 different experiments on rats and humans, accurately capturing the 
effects of hippocampal damage and the complex division of labor between these neural 
systems in learning. 

 
Although they are at different levels of description, ACT-R and Leabra have deep compatibilities 
that enable them to be synthesized into a new system that we will call SAL (Synthesis of ACT-R 
and Leabra).  We have already put components of the two architectures together, and they 
interact successfully to solve a few interesting problems. In our work in Phase II we hope to go 
beyond just piecing together the best of both systems.  We will combine the insights of each 
system into the components of the new SAL architecture.   We will also develop more powerful 
means of interaction among the components.  
 
In this document, we begin with a broad overview of the principles and neural basis of this new 
SAL architecture and how it relates to the existing ACT-R and Leabra architectures.  Then, we 
describe a concrete instantiation of a SAL model in a simplified version of the “Egg Hunt” task, 
operating in the Unreal Tournament simulation engine.  This model shows how SAL can do 
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things that neither Leabra nor ACT-R can currently do by itself, demonstrating the promise of 
the integrated architecture. This example also shows how we can easily extend the functionality 
of SAL without reprogramming the system.   Finally, we outline a trajectory for further 
development of the SAL architecture as we move into Phase II, highlighting some of the key 
scientific and technical challenges and payoffs.  It should already be quite evident that this 
synthesis represents an important new development in the field of cognitive architectures, and we 
are only at the very early stages. 
 

Overview of SAL 
 
The ACT-R and Leabra architectures are both characterized by the attempt to account for a wide 
range of cognitive and neural phenomena using a small and therefore strongly constrained set of 
computational primitives, as contrasted with the predominant “one-off” and “grab-bag” cognitive 
models in the field.  These architectures have been focused on largely complementary domains: 
Leabra on the neural mechanisms subserving the processing of individual stimuli and short 
sequences thereof, and ACT-R on more abstract, longer time-scale controlled cognition 
unfolding over minutes.  These architectures are each arguably the most successful in their 
domain at rigorously accounting for a wide range of cognitive and neural phenomena, with each 
model providing detailed accounts of hundreds of distinct types of data. 
 
Given their independent success at describing the human cognitive system, it is reassuring, and 
quite remarkable, that they have arrived at very convergent views of the overall cognitive 
architecture.  This convergence is particularly significant given that the Leabra architecture is 
derived from more bottom-up neuro-computational constraints about the kinds of processing 
different parameterizations of a common neural substrate can support, while ACT-R is derived 
more top-down based on regularities and constraints present in human cognitive performance.  
This independent convergence provides a strong basis for confidence in the veracity of the 
emerging SAL architecture. 
 
Both the Leabra and ACT-R architectures can be described at the most abstract level in terms of 
complimentary systems that are specialized for cognitively and neurally dissociable forms of 
processing.   These dissociable neural systems form the basis of the SAL architecture, and can be 
categorized most broadly in a tripartite architecture, as previously documented by the Leabra 
team (see Figure 1): 
 

• The posterior cortex, which performs basic sensory (e.g., visual, auditory, and 
somatosensory) processing (in the occipital and inferiotemporal lobes) and motor 
processing (in the parietal lobe, which interacts strongly with posterior frontal cortical 
motor areas).  This area is also critical for encoding higher-level semantic and declarative 
knowledge about the world, including many aspects of language and reasoning (in higher 
level association cortex in both temporal and parietal lobes). 

• The prefrontal cortex, which is necessary for active maintenance of information and 
executive control of cognitive processing, and interacts closely with the basal ganglia, 
which is specialized for action selection and learning about which actions lead to reward 
or punishment.  This system is critical for procedural processing and learning. 

• The hippocampus, which is responsible for rapid learning of new information, often of a 
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declarative (verbally-mediated) form (e.g., the location of a given object in an 
environment, the name of someone you’ve just met, or a new fact such as “the capital of 
Pakistan is Karachi”). 

 

 
Figure 1: Tripartite Architecture of SAL.   Human cognition is conceptualized in terms of the 
computational properties of distinct brain areas, each specialized for different incompatible 

forms of learning (e.g., rapid learning in the hippocampus vs. slow learning in the cortex).  Red 
arrows represent top-down cognitive control (which results from interactions between Frontal 

Cortex and Basal Ganglia), while black arrows represent standard neural communication. 
 
This tripartite, neurally-focused architecture can be decomposed into separable cognitive 
modules, which corresponds very closely with the ACT-R architecture, as shown in Figure 2.  
This mapping of functional modules onto neural structures is only approximate, particularly in 
the case of the imaginal and declarative modules.  In the case of the imaginal module, while the 
control and maintenance are believed to be in the prefrontal cortex, the actual imaginal 
transformations seem to be performed in the parietal cortex, which is part of posterior cortex.   In 
the case of declarative memory, while the hippocampus is a critical component, as in Leabra, 
much of the cortex can store declarative memory as well, and the prefrontal cortex plays an 
important role in controlling encoding and retrieval operations. 
 
Before elaborating the cognitive and neural synergies between the Leabra and ACT-R 
architectures as captured in SAL, we can illustrate the general operation of this system in the 
context of SAL performing the “Egg Hunt” task in the Unreal Tournament (UT) environment 
(more details are provided below).   SAL first hears a command like “find the armor”, which 
initiates a search through a set of rooms until it finds the target object, at which point it takes 
possession of the object.   In this scenario, the different modules play the following roles: 
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1. The aural module holds a representation of the spoken sentence for processing. 
2. The goal module maintains a representation of the activity (“find”) and the object 

(“armor”) throughout the episode. 
3. The declarative module is accessed both to retrieve knowledge of the layout of the 

rooms and to maintain knowledge of which rooms have been searched. 
4. The imaginal module is used to maintain a representation of the current room and the 

locations that have already been examined in the room. 
5. A motor module is used to request movements from room to room and to orient to 

various objects in the room.   
6. A visual module is used to represent the visual scene and identify objects. 
7. The procedural module steps the agent through the tasks of planning its moves, 

performing the actions, and recognizing when the task objective has been achieved.  It 
learns to improve its performance in future attempts, based on the success and failure of 
these actions. 

 

 
Figure 2: Cognitive Module Architecture of SAL, where the broad tripartite architecture has been 

subdivided into finer grained separable cognitive mechanisms. 
 
 

Cognitive and Neural Synergies between ACT-R and Leabra in the SAL 
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Architecture 
 
The Procedural-Declarative Distinction 
The most notable area of convergence between ACT-R and Leabra is in the broad division of the 
cognitive architecture into procedural and declarative components.  From this one distinction, 
many others follow, as elaborated in subsequent subsections. This distinction has clear cognitive 
and neural validity.  People can possess abstract declarative knowledge of how to do something 
but be procedurally incapable of doing so (e.g., new drivers or golf players), and vice-versa (e.g., 
touch typists often cannot recall where the keys are located).  Neurally, the basal ganglia are 
critical for initiating procedural actions, whereas the cortex and hippocampus support declarative 
knowledge. 
 
In the Leabra framework, different types of processing are supported by the neural 
specializations present in the basal ganglia, compared with those present in the hippocampus and 
cortex.  The basal ganglia system is strongly modulated by dopamine, which signals reward and 
punishment information.  Positive reward reinforces associated procedural actions, while 
negative feedback reduces the likelihood of producing associated actions.  A similar, more 
abstract form of reinforcement learning is present in the ACT-R procedural system. 
 
On the other hand, the neural properties of the hippocampus have been shown in the Leabra 
framework to be critical for the rapid learning of new arbitrary information without interfering 
with existing knowledge.  Specifically, having a relatively few neurons active at one time 
(“sparse representations”) causes neural representations to separate from each other, minimizing 
interference.  This rapidly acquired knowledge can, over time, be integrated into more 
overlapping, distributed representations in cortical areas, supporting the ability to draw 
sophisticated inferences and generalize to novel situations.  The declarative system in ACT-R 
integrates both of these properties: new chunks of knowledge, encoded as combinations of 
existing chunks, can be rapidly formed; chunks that are used more frequently over time gain 
higher levels of activation and correspond to more expert knowledge; similarities can be defined 
between symbolic chunks to drive semantic generalization to related situations. 
 
Although dissociable, the procedural and declarative systems interact intimately in any complete 
cognitive process.  In ACT-R, the firing of productions is driven by the active contents of the 
declarative and other memory buffers, and the result of production firing is the updating of these 
buffers.  In Leabra, the basal ganglia procedural system is tightly linked with the prefrontal 
cortex, which maintains task-relevant information in an active state over time.  One of the 
primary functions of the basal ganglia in the brain is to drive the updating of these prefrontal 
active memory states.  These prefrontal areas then influence activation states throughout the rest 
of the cortex via strong top-down excitatory projections.  Each area of posterior cortex has an 
associated prefrontal area, with which it has strong bidirectional excitatory connectivity.  Thus, 
we associate the buffers of ACT-R with these prefrontal representations of corresponding 
posterior cortical areas. 
 
Reinforcement Learning for Procedural Processing 
Both ACT-R and Leabra include reinforcement learning mechanisms to shape the procedural 
processing system.  This form of learning uses success and failure information to shape the 
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probability of selecting a given action in the future, and is dissociable from the form of learning 
that shapes cortical and hippocampal declarative representations.   Although the detailed 
equations differ, there is considerable similarity between the two architectures in the 
computational principles underlying this learning, and both agree that the basal ganglia are its 
central neural locus. 
 
Declarative Learning and Processing Mechanisms 
Both Leabra and ACT-R make use of Hebbian-style learning mechanisms to modulate the 
strength of representations in declarative memory.  Such learning mechanisms are based on the 
history of activation of the information stored in declarative memory; but critically, not on the 
success or failure of a particular action taken using that memory.  This fact clearly dissociates 
these mechanisms from procedural reinforcement learning, and numerous cognitive experiments 
have validated this property of declarative memory. 
 
In terms of processing information already stored in declarative memory, the concept of 
spreading activation is critical to both architectures.  In ACT-R, activation spreads among 
declarative chunks in proportion to their associative strength.  In Leabra, a similar activation 
spreading dynamic occurs, in that coarse-coded distributed representations in posterior cortical 
areas cause associated representations to overlap and share activation states. 
 
Visual Mechanisms 
With respect to vision we can distinguish between visual perception and visual attention.   On the 
visual perception front Leabra offers a detailed theory and will be important for parsing the raster 
format that is anticipated for BICA Phase II. Efforts to incorporate direct perception into ACT-R 
have been limited to date, although there have been some proposals for extensions with systems 
like Robert St. Amant’s “Segman.”   We will explore possible synergies in these approaches in 
the future. 
 
ACT-R has a moderately functional overall theory of top-down attention that has been applied to 
vision, and which we will explore in connection with Leabra attentional processes.   For 
example, Mike Byrne has been developing a "rational analysis of attention" on the premise that 
the system attempts to maximize the information uptake.  This allows background biases such as 
a preference for rare objects to be combined with an immediate and explicit desire to find a red 
object.  We will research how Byrne's equations for the salience of an object (a lot like activation 
equations in declarative memory) map to Leabra.  Separately, Dario Salvucci has developed a 
rather sophisticated theory of eye movements for ACT-R.   Salvucci's equations relate 
information uptake and probability of a movement to foveal distance, and also deal with the 
timing of saccadic programming. As Leabra visual processing is strongly dependent on 
successful foveation, a mapping of this theory onto Leabra control mechanisms could be quite 
powerful.  
 

Initial Concrete Implementation of SAL 
 
The SAL team has built a demonstration model representing a preliminary synthesis of the two 
architectures.  Our goal was to anticipate the challenges we will face in implementing a truly 
integrated and embodied architecture for Phase II.  This demonstration performs a simple version 
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of the “Easter Egg Hunt” challenge suggested by discussions of the Phase II test problems; 
specifically, the SAL agent searches for a target object within a familiar environment.  For this 
demonstration, we adopted a “first order” form of architectural integration, whereby one of the 
cognitive modules in an ACT-R model is replaced with a Leabra network.  In this case, the 
Leabra model is capable of processing raw bitmap images in a way that the ACT-R model was 
not capable of doing; similarly, extant Leabra models are not capable of organizing problem 
solving behavior over a period of several minutes, as required to search for the target object in a 
complex environment.  Thus, this SAL model represents a new level of functionality that goes 
beyond the capabilities of its constituent architectures.  Given that this is the simplest form of 
integration, we are optimistic that much more interesting and powerful forms of cognition can be 
captured as our integration efforts develop further. 
 
It is also worth noting that very little new work was required to make this model operational.  
We had already established a mechanism for ACT-R and Leabra interactions in preparation for 
demonstrations at the August technical meetings, including an attentional blink model and a 
model of the Haimson radar search task.  In the attentional blink model, we combined the top-
down control capabilities of ACT-R with the graded visual representations of Leabra, allowing 
us to account for aspects of psychological phenomena that neither architecture demonstrates 
individually..  In the Haimson radar search task, ACT-R and Leabra shared a symbolic 
representation (a name) for objects of interest and interacted dynamically.  Using an existing 
ACT-R model for searching environments and the Leabra model of visual object recognition, we 
simply adapted the ACT-R task instructions and trained the Leabra model on relevant visual 
stimuli. 
 
In the demonstration, the SAL agent is embodied within an Unreal Tournament simulation 
environment consisting of three rooms containing three categories of objects.  It is familiar with 
the environment in that it has access to navigation points and object location points in symbolic 
form. Further, it has been trained to perceptually identify the three object categories from a 
variety of viewing angles and distances.  An operator instructs SAL to find the desired target via 
a typed command (“find armor”).  SAL must then navigate the rooms; view and perceptually 
identify each object; and when it recognizes the desired target, navigate to it, and picks it up. 
 
As noted, this combined model is implemented using the Leabra system as a perceptual front-end 
for ACT-R, by effectively replacing the ACT-R “Vision What” module; viewed conversely, 
ACT-R serves as a top-down control for the Leabra vision model. ACT-R must decide which 
navigation point to visit next and which objects to view from that navigation point.  Upon 
selection of the object to view, ACT-R provides the digital image that is a snapshot of the view 
of that object from SAL’s current location.  Leabra attempts to identify the object in the center of 
the image, and responds with its conclusion in symbolic form. If the object matches the specified 
target, ACT-R navigates to it, picks it up, and navigates back to the starting point; otherwise it 
selects a new object to view or a new location to which to navigate. 
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Figure 3: The SAL demonstration model architecture.   Navigation through the known 

environment is performed by the ACT-R component, and visual object identification is handled 
by a Leabra neural network component.  The neural network replaces ACT-R’s “vision: what” 

module; the ACT-R production system replaces Leabra’s prefrontal cortex / basal ganglia 
element. 

 
The ACT-R component of the model deals with the challenges of performing the search in an 
efficient manner.  It plans where to begin searching, and uses its episodic memory and inhibition 
of return capabilities to remember where it has already searched. The Leabra component of the 
model was trained to recognize the object categories by repeated presentations of each object 
from a variety of perspectives and distances and in different room backgrounds.  Its non-
embodied performance on novel examples is 96%, when using a variety of backgrounds and 
object angles; simplifying the object angles and ensuring perfect foveation increases its 
performance to 100%. 
 
This model provides a number of benefits: 
 

• It illustrates a simple connection of the two architectures operating together, and 
demonstrates that it is possible to bridge the gap between their different levels of 
description.  

• It serves as a first “embodiment” of a combined model operating in a simulation 
environment. 

• It demonstrates that the system can adapt to new environments and be tasked with new 
instructions without reprogramming. 
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Figure 4: A sample view of a room with single object in the virtual environment. 

 
 
 

 
Figure 5:  The state of the Leabra network as it finishes correctly identifying the armor in the 

scene above.  The network mimics the properties of the visual system, such as: a hierarchy of 
visual areas, with shortcut connections between them; representions of the image at several 

scales; and learning from visual experience. 
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By combining the two architectures in a straightforward way in the context of this task, the 
immediate future research efforts are obvious and compelling. There are a number of clear 
directions for improvement: 
 

1. The combined model must use its “Visual What” system for navigation as well as 
object identification.  It must learn to recognize doorways, room corners, obstacles, 
and other important navigational cues, and the control system must learn what to do 
with these inputs. 

2. Rather than directly specifying a next location by its coordinates, the system must 
navigate using simpler locomotive operations, such as “move forward” or “turn 
right.”  These operations could then be further elaborated to interact with more 
realistic effectors by a motor module based on previous Leabra work on learning 
motor movements.  This was done in the ACT-R MOUT system, and that model can 
be adapted for SAL. 

3. Rather than automatically orienting directly toward an object or navigational cue, the 
combined model must perform visual search in a way that is guided by both 
perceptual inputs and task demands.  This will require a deeper and more 
sophisticated integration of ACT-R and Leabra, combining body movements and 
saccades with dual goals of learning the navigation options and attempting to find and 
identify objects in the environment.  This deeper integration is likely to involve 
integrating ACT-R models of visual salience and eye movements with Leabra 
calculations graded activation information. 

4. The system must be able to purposefully learn about new perceptual inputs. The 
Leabra perceptual system will need to recognize novelty in objects, actions, or 
outcomes, and the cognitive system will respond by making a goal of learning more 
about the novel element and taking active steps to do so. This approach is inspired by 
the theory that human infants act as scientists, making hypotheses and performing 
simple experiments to test them. 

5. Since navigation points and object locations will no longer be available in symbolic 
form, the model’s internal representations of “where it has been” and “where it has 
looked” must instead be connected to perceptual representations of elements or items 
identified in the environment. This will also drive a deeper integration of ACT-R and 
Leabra, by requiring either a neurally-based episodic memory, symbolic chunks that 
have non-symbolic perceptual components, or both. 

6. The control model must become more robust to perceptual and motor errors.  Since 
the visual system will sometimes identify or search incorrectly, and the motor system 
may bump into obstacles or walls, the system must recover from these errors and 
choose a viable strategy for recovering and continuing.  The ACT-R community has 
had some experience with achieving this robustness in the MOUT system and we 
believe this experience can be applied to SAL models. 

7. The particular model needs to be capable of more flexibly learning from experience.   
In particular we hope to take advantage of the work in ACT-R on combined learning 
from instruction and observation.  With respect to language processing we will need a 
system that can more robustly respond to instruction and this may require taking 
advantage of the more continuous and approximate representations that Leabra 
allows. 
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This demonstration project has been useful in revealing some challenges that arise in 
constructing a truly embodied and flexible cognitive architecture.  These challenges highlight 
gaps in existing psychological theory, and suggest that building embodied architectures may be 
crucial to progress in the field. The project has also established the surprising power and 
flexibility available with even a simple combination of ACT-R and Leabra architectures.  The 
two architectures are quite compatible despite two different levels of focus, suggesting that these 
two approaches have converged on a correct overall theory of cognition.  The combined SAL 
architecture is capable of accomplishing tasks that are fundamentally beyond the reach of either 
ACT-R or Leabra operating in isolation.  This success suggests that substantial progress has 
already been made in understanding the human mind in enough detail to replicate it.  
 

Future Evolution of the SAL Architecture 
 
In addition to the more task-specific challenges facing the SAL model outlined above, there are a 
number of more general and far-reaching issues that will shape the future evolution of the 
architecture. Overall, we hope to evolve this architecture from a relationship of mutual 
codependency between components of two separate systems to a more synthetic combination of 
the two systems.  Below we consider the consequences of such a synthesis for some of the 
modules.  
 
1.  Procedural: The ACT-R production system represents a high functionality system that 
provides the needed control in SAL.   Leabra’s basal ganglia model represents a much more 
detailed system that is closer to the neural realities.   In the synthesis we will constrain the 
production system to reflect that neural reality and in the process actually increase its 
functionality. 
 

(a) Action Selection.  In the current ACT-R system, a production will fire only if it matches 
exactly.  Exact matching is not tenable in light of either the biology or the needed 
functionality. Among the productions that do match in ACT-R, selection of the one to fire 
is made on the basis of learned reinforcements. This constraint that selection only begins 
to apply after matching is complete is again not tenable in light of either the biology or 
the needed functionality.  The Leabra system would suggest that a dynamic threshold for 
matching emerges as a function of a competition among candidate productions – a less 
than perfect match can fire if it is the best thing currently available.  This may be critical 
for allowing the system to learn new productions by reshaping old ones in new ways, as 
partial matches based on existing knowledge are co-opted and modified for new tasks. 

(b) Production Learning.  One of the functionally powerful mechanisms in ACT-R is 
production compilation, by which new productions are created.  In a typical example, one 
production will request a critical piece of information be retrieved from declarative 
memory, the information will be retrieved, and a second production will act on it.   
Production compilation replaces this with a single step in which the action is directly 
taken without retrieval. This is critical to the process by which instructions come to 
directly control behavior. From the Leabra perspective, this kind of learning involves the 
development of new representations in both prefrontal cortex and basal ganglia, and with 
sufficient levels of repetition, may become independent of these systems and be encoded 
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directly between the parietal and motor frontal areas.  Thus, there are likely to be 
important shifts in the locus of neural activity over the course of production learning, 
which may produce important functional benefits in terms of reducing central capacity 
bottlenecks for highly practiced procedures.  In the context of a navigation and target-
search task, the ability to avoid obstacles and perform local navigation may become 
highly automated and free up more resources for visual search and higher-level route 
planning. 

(c) Pattern Matching.   One of the critical questions is exactly how complex a pattern can 
be recognized in a single production cycle or a single pass through the basal ganglia.   
The simpler production rules in ACT-R can be realized in Leabra-like processes.   
However, Anderson has identified a more powerful kind of rule involving what he calls 
dynamic pattern matching which seems critical for human intelligence.   In particular, 
they are critical for learning from instruction and demonstration – the typical means of 
social communication of knowledge.  This can be supported through Leabra’s dynamic 
gating system. The current mechanism in ACT-R is only able to learn dynamic pattern-
matching productions from other dynamic-pattern matching productions – it is not able to 
generalize explicitly matched rules to dynamically matching ones. Considering such 
mechanisms, in conjunction with Leabra capabilities such as dynamic gating, provides a 
good area for exploration. 

 
2. Declarative:  When ACT-R retrieves a chunk, it selects the most active one. The activation of 
a chunk reflects its past frequency of occurrence, its strength of association to the current 
context, and how well it matches the retrieval probe.   All of these factors are combined to yield 
a quantity that reflects the likelihood that the chunk is the desired memory.  A series of blending 
models have been developed in ACT-R for merging the contribution of multiple chunks into a 
single retrieved memory.  In Leabra, there are actually two underlying systems supporting 
declarative retrieval: the hippocampus and posterior cortex.  These systems have different 
characteristics.  The hippocampus behaves more like ACT-R single-chunk retrieval, in that a 
single coherent chunk is typically retrieved, and it is highly sensitive to context and probe match.  
However, the posterior cortex can support overlapping distributed representations of multiple 
chunks at the same time, with each making a graded contribution to the overall memory retrieval 
process.  This is more like the ACT-R blending models.   We plan to integrate the Leabra and 
ACT-R perspectives into a more effective declarative memory. 
 
Part of the effectiveness of declarative memory is the ability to incrementally absorb facts and 
adjust its generalization threshold to reflect the increasing knowledge base.  In Leabra, that 
property arises from the gradual increase in the size of connection weights as a function of 
practice.  In ACT-R however, while the absolute activation level of chunks increase with 
practice, their discriminability does not.  We have experimented with modifying the ACT-R 
activation and partial matching equations to more closely reflect the computations in Leabra.  
This work is an instance of a different sort of integration between ACT-R and Leabra where 
properties of one are absorbed into the other at a different level of abstraction.  This approach is 
complementary to the integration strategy described earlier and indeed facilitates it. 
 
3. Motor:  The current motor actions are issued as discrete requests that are not guided by 
changing sensory information.   A more Leabra-like implementation would have the specific 

Approved for Public Release, Distribution Unlimited 



parameters of these actions emerge as a result of a strong constraint-satisfaction process that 
takes into account many variables (precise location of things, speed of motion, slope of the floor, 
etc) to produce the desired goal. 

 
4. Visual:  The current visual system in ACT-R can only use top-down constraints to select 
objects to attend to.   When these top-down constraints fail to find adequate guidance it is left to 
select among the objects randomly.  There is new work within the ACT-R group on visual 
salience and how that can provide bottom-up influence.  Merging bottom-up and top-down 
constraints will be critical in the anticipated BICA environments.   Leabra provides guidance 
about how to coordinate the bidirectional top-down and bottom-up effects. 
 
In addition to these module-specific considerations, there are numerous broad-based issues that 
are common across many different modules.  For example, the way that learning is shaped by 
emotion and motivational states, which in turn are strongly influenced by social interactions, is a 
critical aspect of human cognition that SAL will need to address more directly.  Some of this is 
captured in the existing reinforcement learning models in each architecture, but these issues 
really go beyond the confines of the procedural learning system, and shape representations and 
processing throughout the system.   
 

Conclusion 
 

We are just at the very beginning of what will hopefully be a long and fruitful process of 
breaking down longstanding barriers between different architectural “camps” in the field, and 
developing a truly synthetic and powerful understanding of the human cognitive architecture.  
The joining of forces represented by the SAL team already represents an unprecedented 
accomplishment of the BICA program, and we look forward to many more.  We are confident 
that the BICA goal of developing a dynamically taskable, adaptive cognitive agent that can be 
deployed in a wide range of novel environments and task conditions is achievable with the 
synthesis of ideas represented by our team. 
 
 
 

Supplementary Reports on Research Activities 
 
Report 1: Models of Algebra Learning 
 
The ACT-R group has been working on learning in the domain of algebra.  They have taken this 
as a miniature for exploring the taskability issues that will arise in BICA Phase II.   An 
environment has been created for presenting problems and instructions to ACT-R or students 
much like a common environment is imagined for the BICA Phase II.   Empirical explorations 
have included study of standard algebra taught to children and an isomorph appropriate for 
instruction to adults.   Different studies have looked at learning from typical textbook instruction, 
learning from examples, and learning from exploration.  These reflect the modes of learning that 
will be required of the BICA agent.  Successful ACT-R models have been developed of learning 
from instruction and learning from examples that are able to predict the learning trajectories of 
actual students.   However, the ACT-R group is still working to characterize the rather 
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remarkable success that students have in learning from discovery.   Particularly important for our 
ongoing efforts to model learning from exploration is understanding how the existing knowledge 
of students guides their exploration and enables them to interpret the outcomes of this 
exploration.   Again it will be critical in BICA Phase II to be able to characterize the role of prior 
knowledge in learning about the environment. 
 
One of the important outcomes from this effort was the realization that the current pattern 
matching in the ACT-R system was not powerful enough to enable processing the abstract 
relationships in instruction and example.   Initial explorations revealed that we could capture the 
kind of learning students were doing with the more powerful SOAR pattern matcher but that the 
SOAR pattern matcher was so powerful as to be completely unrealistic biologically – being able 
to do exponential search in a single match.   This led to a restricted version of pattern matching 
called dynamic pattern matching.   One of the early results of interactions between the Leabra 
and ACT-R research group was the realization that the Leabra dynamic gating system provided a 
neural model for dynamic pattern matching in ACT-R.   One of our future goals is to use this 
Leabra work to provide a more careful analysis of how dynamic pattern matching should be 
implemented in ACT-R, what its limitations are, and how to characterize its time costs relative to 
regular ACT-R pattern matching. 
 
Another aspect of this research has been to look at the learning of algebra in an fMRI scanner.   
There is a mapping of the ACT-R modules onto specific brain regions and we have been able to 
use activation in these regions to inform our models of these tasks.  As such it represents the 
potential role of fMRI in BICA Phase II.   
 
The imaging experiment looked at the brain signature obtained while participants performed 
certain algebraic transformations.  It manipulated two factors.  One was whether the 
transformations were relatively simple algebraically (e.g., 3*4X=24 --> 12X=24) or relatively 
more complex (e.g., 3*(4 + x)=24 --> 12+3x=24).  The second was whether this was early or late 
in the learning.  Figure 6 illustrates the results obtained from four cortical regions.  The dotted 
lines connect the actual data and the solid lines are the predictions of the theory. 
 

(a) Figure 6a shows the response in the region of the motor cortex that controls hand 
movement and corresponds to the manual modules.  Since it required more hand motions 
to execute complex transformations there is greater activation in this region for complex 
transformations.  However, the number of hand movements did not vary early to late.  
While participants took longer earlier and so the response is stretched over a greater time 
span, the total area under the curves is the same. 

(b) Figure 6b shows the response in the region of the fusiform gyrus, which we have found to 
tap the high-level activity of the visual module which is all ACT-R represents.  This 
shows both greater activation for complex equations and greater activation early.   Like 
the motor region the greater activation for more complex equations is predicted because 
more encoding is required to enable a complex transformation.   The ACT-R model does 
not really predict the learning effect.  The solid lines in Figure 6b were only produced by 
the ad hoc reduction of encoding time for the late curves.   This points to a place were a 
SAL model with Leabra-based visual learning would do better. 

(c) Figure 6c represents activity in a prefrontal region that many researchers have found to 
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reflect retrieval from declarative memory, presumably because it holds controlling 
retrieval cues.   The pattern we see here is one that has been observed in almost every 
study we have done manipulating complexity and practice – which is large effects of 
both.   An effect of complexity is predicted because more retrievals are required for more 
complex equations and an effect of practice is predicted because the major dimension of 
learning in the ACT-R model is the drop out of some declarative retrievals and a 
reduction in the time to perform others. 

(d) Figure 6d shows the activation pattern in the anterior cingulate cortex, which is believed 
to reflect control operations.  Like the other regions it shows greater activation for the 
more complex condition but the effect of practice is complicated.  In the case of simple 
equations there is no effect on area under the curve but in the case of complex equations 
there is actually an increase in area under the curve with practice late in the performance 
of the transformation.  This reflects the fact that mastering later transformations makes 
students sensitive to decisions about signs that they ignored earlier.  These sign decisions 
come late in entering the transformation. 

 
These data illustrate how imaging data can confirm the theory in ways that range from expected 
to surprising (e.g., Figure 6a to Figure 6c to Figure 6d) and at the same time indicate places 
where the analysis needs to be modified (i.e., Figure 6b). 

Approved for Public Release, Distribution Unlimited 



Approved for Public Release, Distribution Unlimited 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Scan

Early Complex Late Complex
Early Simple Late Simple

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Scan

a. Manual Module: Motor b. Visual Module: Fusiform 
Early Complex Late Complex
Early Simple Late Simple

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Scan

Early Complex Late Complex
Early Simple Late Simple

c. Retrieval Module: Prefrontal d. Goal Module: Anterior Cingulate 

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Scan

Early Complex Late Complex
Early Simple Late Simple



Figure 6.   BOLD response in four cortical regions for simple and complex equations, early and 
late in practice.   Dotted lines connect actual data and solid lines are predictions from ACT-R 

modules. 
 
Report 2: Attentional Blink Model 
 
To demonstrate that the SAL architecture can model behavioral phenomena that are difficult or 
impossible to model with either ACT-R or Leabra alone, we developed a SAL model of the 
Attentional Blink phenomenon. 
 
In the experiment associated with Attentional Blink, participants are presented with rapid 
streams of 20 characters (at a presentation rate of 100 ms/character), most of which are digits 
(distracters), and some (0, 1 or 2) are letters (targets). The goal for the participant is to identify 
and report the targets (the letters). In streams with two targets, response accuracy differs 
depending on how many distracters are presented between the two targets. This distance is called 
the lag, where lag 1 means no distracters in between the targets, lag 2 one distracter, etc. If the 
lag is five or more, accuracy on both targets is the same, around 80%. When the lag is less, 
accuracy on the second target is worse then on the first target with one exception: when the lag is 
one, meaning the targets are immediately sequential, accuracy on both targets is again identical. 
However, in that case participants make a different error: they sometimes report the two targets 
in the wrong order. 
 
To model the task we used a SAL prototype that is architecturally similar to Figure 3, where the 
“Vision what” module of ACT-R was replaced by a modified Leabra vision model. This 
modified Leabra model does not reset its activations between stimuli, and its output is a set of 
graded activation values at each time step, rather than a final symbolic determination.   Having 
been previously trained on the character set used in the human experiment, the Leabra network 
was presented with the stream of characters that the participants also perceived. Due to the speed 
of the input, the network was not always able to reach peak activity for a particular classification, 
and would sometimes be in a transition in between two classifications when queried by the ACT-
R part of the model. Figure 7 shows a sample graph of output activation of the vision module. 
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Figure 7. Example of activation rise and fall for 7 output cells (for characters 2, 3, 5, 7, 8, 9 and 

P). Vertical lines indicate where a new character was presented to the network. Note that it 
takes around 10 cycles (20 cycles maps onto 100 ms) before a new character produces a rise in 

activation in the output layer. If the network is sampled at a moment when multiple characters 
are active (e.g., 2 and 9 at cycle 115) it will pass all candidates on to ACT-R. 

 
The Leabra component not only provides a realistic account of how a letter is processed, but also 
explains why the order of targets is sometimes mixed up when the two targets are right after each 
other: if the network perceives two characters at the same time it has no way to deduce the order, 
so has to make a random guess (participants report that it seems like the two letters are 
superimposed on each other). 
 
Once Leabra has recognized characters, ACT-R has to classify and possibly memorize them. The 
ACT-R model assumes that targets are stored in the imaginal buffer. In order to determine 
whether something is a target, its category (letter or digit) has to be retrieved from declarative 
memory first. The rapid presentation rate puts a heavy strain on the capacity of the architecture 
to keep track of all the input. Once a first target has been detected, the additional task of storing 
it creates additional load on the system, creating a ripple effect (similar to a traffic jam) on 
processing further down the line. It turns out that the peak of this “cognitive traffic jam” is 200 to 
300 ms after the presentation of the first target, which is exactly where the attentional blink 
effect peaks. Figure 8 shows the comparison between model and data. 
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Figure 8. Data and model results of the attentional blink experiment. Left: proportion of correct 
T2 responses, showing the attentional blink effect.  Right: proportion of switch errors, where 

both targets are named correctly but in reverse order. 
 
The model of attentional blink combines the strengths of the two architectures: the fine-grained 
perceptual capabilities of the Leabra architecture can explain the reversals at lag 1 (Figure 8, 
right), and ACT-R’s serial processing constraints on individual modules can explain the blink 
effect (Figure 8, left). 
 
Report 3: Additional ACT-R Research Thrusts 
 
While for phase I the ACT-R part of this effort has been concentrated at CMU, it also included a 
number of consultants who have been longstanding members of the ACT-R community and are 
envisioned to play a much more substantial role in Phase II to help us tackle the difficulty and 
complexity of the tasks ahead.  Those consultants involve 12 people distributed over 8 
institutions: 
 
Air Force Research Laboratory Mesa 
Naval Research Laboratory Washington DC 
Rensselear Polytechnic Institute 
Drexel University 
Rice University 
Pennsylvania State University 
Xerox Palo Alto Research Center 
University of Michigan 
 
In addition, Alion Science & Technology has also been involved as a subcontractor. 
 
During phase I, those consultants have investigated architectural issues of central interest to the 
goal of BICA and in particular to the challenge tasks and environments that have been discussed. 
To avoid scattering our efforts and to bring significant resources to bear on those problems, they 
have organized into larger teams focused on a small number of research questions that are both 
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of fundamental scientific interest and directly relevant to the BICA challenge tasks.  The teams 
considered constraints ranging from functional performance to neuroscience evidence in 
evaluating architectural designs for the hybrid SAL architecture.  Those research questions, 
together with the teams focused on them, are:  
 
Spatial modules and navigation (AFRL, NRL, Rice) 
This research thread focuses on developing a new spatial module for SAL.  The current ACT-R 
visual module only provides a relatively flat and static view of the world and significant 
enhancements are required to operate effectively in the 3-dimensional dynamic world of the 
challenge problems as well as to reflect a more complete picture of the neuropsychological 
evidence regarding human spatial abilities.  This new module would work in concert with the 
improved and integrated versions of the visual and motor modules and would provide 
competencies including support for frames of reference, mental imagery, magnitude estimations, 
spatial transformations and navigation.   
 
Situation Awareness/Multimodal Integration/Episodic Memory (Drexel, RPI, AFRL) 
This research thread focuses on developing memory competencies that integrate external 
experiences across time and across sensory modalities.  The current ACT-R declarative memory 
represents information of different points in time or sensory modalities as independent chunks 
without any links to a common integrated picture of the environment associated with episodic 
memory capacities.  This research effort has explored ways of maintaining robust continuous 
situation awareness in a dynamic environment by developing memory representations and 
processes that integrate experience across time and sensory modalities.  These do not take the 
form of a new architectural module but instead consist of an elaboration of the existing memory 
representation and retrieval processes.  
 
Motor modules/Robotic Embodiments (Rice, PSU, NRL) 
This research thread focuses on developing motor modules consistent with the simulated 
embodiment of the BICA agent, including simplified lower-body, articulated upper body and 
complex manipulators.  The current ACT-R motor module is limited to two-handed keyboard 
actions and needs considerable generalization to support the proposed embodiment.  This 
research thread also investigates and develops architectural assumptions such as direct 
perceptual-motor module links and continuous control of motor actions.  Because of the 
importance on learning and development and the difficulty in programming controllers for 
complex activators, this thread also focuses on learning mechanisms for the new motor module 
in concert with cognitive learning mechanisms such as production compilation.  This coordinated 
learning across architectural modules constitutes a significant challenge and a major innovation.   
 
Language/Ontologies (Michican, Xerox PARC, Alion) 
This research thread focuses on developing language capabilities to support the dialogue with 
teacher(s) and fellow BICA agents in the proposed task environment.  These include support for 
understanding instructions, language acquisition similar to human development, and support for 
the role of language in cognition.  This thread also focuses on representational issues, such as the 
adoption of common ontologies for integrating models.   
 
Social Interactions/Theory of Mind (Alion, Drexel) 
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This research thread focuses on the social capabilities involved in interacting with teacher(s) and 
BICA agents in the task environment, including inferring and understanding the beliefs, 
intentions and actions of others, sharing mental pictures, and working in cooperation and 
competition.  This thread also focuses on understanding the role of mirror neurons in learning 
from demonstration and imitation.  This will require integration both with the visual/spatial 
modules to provide a representation comparable to that provided by mirror neurons and with the 
motor modules to allow the closing of the loop from visual input to motor action and back.  This 
could take the form of a separate intentional module, of direct connections between perceptual 
and motor modules, of cognitive skills modulating those interactions, or any combination of the 
above 
 
All of these research directions involve interaction between with the teams  (e.g. the second topic 
will need to take as input the output of the spatial modules developed under the first topic) as 
well as with the CMU team, requiring continuous attention to integrating these efforts 
conceptually (as well as in software) into a coherent framework.  
 
Report 4:  Additional Leabra Research Thrusts 
 
In addition to its contribution to the SAL effort discussed previously in this report, the Leabra 
group also developed Leabra-specific architectural elaborations during Phase I, including new 
proposed models of brain regions that we have not previously addressed, as well as the 
adaptation and “scaling up” of existing models. Although these elaborations were developed as 
part of our independent Phase I effort, we anticipate that many of them will fit naturally into the 
SAL architecture. Consistent with past approach, these architectural elaborations are based 
closely on the intersection of (a) what is known about how the brain solves these same problems, 
and (b) the principles of successful computational models, derived from prior Leabra research as 
well as through the literature. Some of these key principles are reviewed at the end of this report. 
Figure 9 provides an illustrative overview of these architectural elaborations, including both 
existing and planned network models, in one possible configuration in the context of the 
proposed SAL architecture.  
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Figure 9. Planned Leabra networks for the SAL architecture. See text for details.  Models with 

solid borders are planned elaborations of existing models; dashed borders indicate models 
which have been planned in phase I, but do not yet exist in working form.  Dotted lines denote 

planned connections between models. 
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Module 1:  Visual “What” – Ventral Visual Stream 
 
To date, the bulk of our effort to apply Leabra to real-world problems has been focused on 
models of the visual system.  Our current ventral stream model performs well on object 
identification and classification compared to state-of-the-art statistical learning methods, despite 
a relatively brief development and training period.  For example, it can identify 100 different 3D 
objects at up to 3x scale variations and 36 degree rotations, at 95% accuracy, and exhibits 
excellent performance on real-world photographs.  In addition, models developed initially for 
object recognition show emergent visual search behavior; see the “Visual Where” section below. 
The success of these visual system models indicates that rapid progress could be made in 
constructing large-scale models of other brain systems; see the final section of this report, “the 
Leabra approach” 
 
Our existing ventral stream model is a Leabra network based on the known structure of the visual 
system. It has a hierarchical set of layers representing areas V1, V2, V4 and IT.  One key 
biologically-inspired principle in this and all Leabra models is the inclusion of abundant 
feedback connections.  These connections allow for biologically realistic error driven learning, 
and allows a type of constraint satisfaction that greatly enhances performance over feed-forward 
models.  A second key principle of this model is mimicking of the collapsing receptive field 
structure of the biological visual system.  Each unit is constrained to receive from a limited 
subset of those in the previous layers, so that the size of spatial receptive fields increases in 
progressively higher layers.  After training with a combination of associative and error-driven 
learning, units’ response properties resemble those found in the mammalian system: higher units 
respond to increasingly complex object features, and with increasing spatial invariance.  These 
principles are commonly thought to play similarly important roles in other sensory systems. 
 
We anticipate that adding input filters for color and texture, both of which serve as powerful cues 
to object location and identity, will improve performance further.  We have also architected and 
begun work on a simplified semantic network to represent parts of objects as well as objects. 
This function will work synergistically with ACT-R’s sophisticated control process.  Finally, 
improvements in the dorsal stream components described next will allow the network to better 
focus on an object or feature of interest and ignore background clutter. 
 
Module 2: Visual “Where” – Dorsal Visual Stream 
In the Leabra model of the visual system, the dorsal and ventral streams are both integrated into a 
single interactive network.  The network layers that perform spatial location and attention 
leverage the limited spatial information from the ventral stream (“what”) layers.  The same 
reciprocal connections that enable biologically realistic error-driven learning in the ventral 
stream also allow top-down object-based attention: activating the output representation of a 
target causes the lower-level units representing features (and approximate location) of that object 
to gain an advantage in the ongoing competition with surrounding units. Competition within the 
spatial layers then produces enhanced activity at the location of the target object.  (This process, 
known as biased competition, is a prominent explanation of attention that can explain a large 
variety of sensory and cognitive attentional phenomena). Because of inhibitory competition, this 
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attention on important features also reduces the activation of irrelevant aspects of stimuli, 
improving both visual search and object recognition performance. 
 
This model is able to localize targets in visual fields with multiple objects with up to 95% 
accuracy for simple objects, and 76% for more complex objects.  This effect of object 
complexity on visual search ability is a well-documented feature of the human visual system.  
Ongoing work on this model includes adding motion signals (also processed by the dorsal 
stream) and integrating it with other sensory modalities (e.g., auditory and somatosensory 
location signals). 
 
Module 3: Auditory Processing – Dorsal Temporal Lobe 
During Phase I we designed an architecture for audition based on the strategy used in the visual 
system: apply the Leabra algorithm in a network modeled after the known architecture of human 
auditory brain areas.  Our approach to auditory processing is to filter the input over time as well 
as frequency dimensions, consistent with what is known to occur via the pathway from hair cells 
through sensory thalamus.  Input neurons will code for instantaneous frequencies and for 
particular changes in frequencies over time.  A second input layer provides the same information 
for the previous time step, allowing context information about the previous sound to guide 
processing, as in human speech recognition.  Thereafter, the same hierarchical approach as 
employed in visual processing will be applied: each unit will receive from lower units 
representing a pre-specified range of frequency and frequency changes, and the same learning 
algorithm will be applied so that they form more specific receptive properties according to their 
usefulness in identifying words and sounds.   
 
Modules 4, 5, 6: Procedural, Goal, Imaginal - Prefrontal Cortex/Basal Ganglia (PFC/BG) 
The Leabra architecture for the prefrontal cortex and basal ganglia evolved in significant ways 
during Phase I. This system is specialized for working memory and executive control, through its 
ability to actively maintain (PFC) and adaptively update (BG) task-relevant information (goals, 
partial products of ongoing processing, etc).  As noted earlier, the gating provided by the BG is 
functionally similar to the procedural module in ACT-R, in that it activates specific memory or 
control representations in PFC when certain conditions are met.  These PFC representations play 
the role of the goal and imaginal buffers in ACT-R, providing information for further procedural 
decisions.  In addition, the maintained representations exert a direct top-down biasing influence 
to direct attention in sensory systems, and direct the motor system toward specific goals. 
 
Based on known anatomical and electrophysiological characteristics of the brain, the model is 
organized into micro-anatomical “stripes,” each capable of maintaining isolated pieces of 
information. Each stripe is also selectively updateable by mechanisms driven by the basal 
ganglia.  Critically, cells of the basal ganglia actually learn to control this selective gating of 
active maintenance in the PFC under the influence of  reward prediction error signals delivered 
by ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) dopamine cells. 
These dopamine cells, in turn, are themselves driven by a distinct subsystem (Primary Value, 
Learned Value, or PVLV) involving learning in the amygdala and ventral striatum.  In this 
system, global working memory representations can be adaptively modified over time to exert 
flexible control.   
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During Phase I, we elaborated several improvements to the PFC/BG system.  These (shown in 
Figure 9) include: (1) sub-specialization among the various areas of the PFC, e.g., the anterior 
pole (aPFC) for higher abstract task switching and the olfactory cortex (OFC) for goal and value 
representations; (2) integration of related areas known to play a role in cognitive control, e.g., the 
anterior cingulate cortex (ACC) for conflict monitoring and error expectation, which regulates 
the maintenance and updating of PFC representations; (3) output gating (in addition to existing 
maintenance gating) to control when maintained information influences processing and motor 
output; and (4) integration of the PFC/BG working memory system with a similar BG-based 
functionality known to exert control over motor behaviors, especially involving motor plans. 
 
Module 7: Declarative Memory - Hippocampus/Medial Temporal Lobe (HC/MTL) 
As noted earlier, the hippocampus and medial temporal lobe function as a sub-system specialized 
for the rapid learning of arbitrary information. The hippocampus receives information from a 
wide range of cortical areas, essentially representing the entire cortical state at one time in the 
entorhinal cortex (EC) input layer of the hippocampus.  It encodes this state using very sparse 
representations (in the dentate gyrus (DG) and area CA3), which produce pattern separation to 
avoid interfering with other representations.  This hippocampal state can be recalled from a 
partial cue (via recurrent collaterals in CA3), and this recall spreads back from the hippocampus 
(via invertible CA1 representations connected to EC) out to the cortex, resulting in the 
reinstatement of the original cortical representation. This general ability is critical for episodic 
memory and navigation. 
 
Our hippocampal model is well established and tested on a wide range of tasks.  The next step is 
to integrate it with our visual model, to enable rapid learning of specific spatial locations and 
object-name associations. 
 
Module 8: Motor/Somatosensory 
We developed some initial models of motor control and somatosensory feedback.  The initial 
model learns to control a two joint arm, but the principles should generalize to more complex 
effectors, because everything is based on learning.  Our goal is that an untrained model following 
this architecture could be placed in a body with different sensors and effectors, and would learn 
to manipulate its motor systems. 
 
The inputs to the motor model are a goal location and somatosensory information on the relevant 
system's current state, such as position and joint angles.  The “inverse” system then computes a 
motor command to move toward the goal from the current position.  This system learns through 
rewards (successful reaching to the goal or not). This learning signal is aided by a predictive 
layer that anticipates the sensory result of a given motor command (i.e., a “forward” model).  
This predictive system learns more quickly since it has the benefit of an error signal at every 
time step.  Our next step is to integrate this model with the PFC/BG system to provide better 
action selection abilities (especially for temporal sequences of actions), and with the visual-
spatial model to provide better perceptual representations of motor effector state. 
 
Software Development 
We are nearly done with a major overhaul of the PDP++ neural simulation software that we have 
developed and used since 1993.  This new version provides much greater flexibility in the way 
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that Leabra models can be trained and tested, by adopting a graphical programming language 
approach similar to that of widely-used experimental testing software (e.g., E-Prime).  It also 
provides a much more powerful and flexible GUI, with tabbed browser functionality, and 3D 
visualization based on the OpenGL API. These changes will enable models to interact more 
realistically and continuously with a virtual or real world, as well as interchanging information 
with ACT-R under the SAL architecture, without the need of modelers to change the core code 
of Leabra. 
 
Background info on the Leabra Framework 
All of the above models use a common set of computational mechanisms that reflect a long-term 
effort to integrate biological, computational, and cognitive constraints on the fundamental nature 
of neural processing in the cortex and other brain areas.  Perhaps the most important mechanisms 
are the combined Hebbian and biologically-plausible error-driven learning mechanisms, which 
enable the models to self-organize new representations to solve challenging tasks.  We have 
repeatedly found that using both forms of learning, which is unique to the Leabra framework, is 
critical for many learning domains.  These learning mechanisms are substantially more effective 
when combined with inhibitory competition, which drives different neurons to specialize for 
representing different information.  This inhibitory dynamic, captured in Leabra using a 
computationally-efficient k-winners-take-all (kWTA) mechanism, is also critical for stabilizing 
the activation dynamics that emerge with bidirectionally-connected networks.  This bidirectional 
connectivity is critical for biologically-plausible error-driven learning, and for capturing 
interactions between bottom-up sensory-driven processing and top-down goal-driven processing 
(as in our visual search model).  Most other neural networks do not support full bidirectional 
processing because it produces complex activation dynamics that are difficult to control without 
a solid inhibitory mechanism like the kWTA present in Leabra.   Finally, Leabra relies 
extensively on coarse-coded distributed representations, which enable generalization to novel 
inputs and are highly efficient and robust.  All of these features together produce a synergistic 
emergent dynamic that seems critical for capturing the magic of human cognition. 
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