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OutlineOutline

• Introduction
• Unique aspects of KAPE
• Signal modeling and validation
• KAPE implementation
• Implementation steps
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Specific ChallengesSpecific Challenges
Target-Like Signals in the 
Secondary Data (TSD)

Clutter Discretes

Distributed Clutter Variations

Reduces signal gain, affects variance of 
bearing estimate, distorts adaptive filter 
response, leads to inefficient allocation of 
adaptive DoFs 

Increases false alarm rate (in CUT), can 
degrade output SINR and bias threshold 
(in training)

Leads to degraded output SINR via two 
predominant mechanisms:

• Overnulling signal cancellation
• Undernulling increased clutter    

residue

Amplitude and spectral characteristics

Site-specific clutter
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ObjectivesObjectives

• Improve MTI radar performance in heterogeneous 
clutter environments by exploiting a priori knowledge

• Enhance front-end processing functionality by…
– Removing bulk of clutter to increase contrast against outliers
– Providing good instantaneous response by tracking clutter 

variation
– Avoiding anomalous response due to targets-in-the-

secondary data (TSD)

• Reduce higher-dimensional parameter estimation 
step to estimating several model parameters

Enforce filter response consistent with anticipated properties of clutterEnforce filter response consistent with anticipated properties of clutter
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GTRI KAGTRI KA--STAP Flow DiagramSTAP Flow Diagram
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KnowledgeKnowledge--Aided Parametric Covariance Aided Parametric Covariance 
Estimation (KAPE) OverviewEstimation (KAPE) Overview

• Exploit certain aspects of clutter known with fairly high accuracy to pre-whiten data
– Blend both measurements and a priori knowledge

• Goals:  (1) Avoid TSD; (2) Provide good instantaneous response; and, (3) 
Remove bulk of clutter to provide contrast against certain outliers

• Exploit certain aspects of clutter known with fairly high accuracy to pre-whiten data
– Blend both measurements and a priori knowledge

•• GoalsGoals:  (1) Avoid TSD; (2) Provide good instantaneous response; and, (3) 
Remove bulk of clutter to provide contrast against certain outliers

1. Estimate 
Array Manifold
1. Estimate 

Array Manifold

2. Estimate 
Clutter 

Amplitude

2. Estimate 
Clutter 

Amplitude

3. Form 
Candidate

Whitening Filters

3. Form 
Candidate

Whitening Filters
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INU/GPS 
Platform, 

Array
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4. Select Best
Filter
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5a. Apply 
Best CMT

6. Pre-Whiten
Data
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Data
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Colored LoadingColored Loading

• Approaches by ISL [1] and Alphatech [2] very similar
– Involves adding a scaled, simulated clutter covariance matrix to

covariance estimate along with diagonal loading term
• ISL – unity power, then scale by CNR
• Alphatech – multi-CPI estimate of reflectivity, rescale 

eigenvalues, retain subspace defined by covariance estimate
– Stated goal: “Faster convergence,” to “improve detection 

performance in heterogeneous clutter environments”
• SAIC [3] has different approach 

– Chooses colored diagonal loading matrix to impart specific 
quiescent response

– Faster convergence is still goal
1. J.S. Bergin, C.M. Teixeria, P.M. Techau, and J.R. Guerci, “Space-time beamforming with knowledge-aided constraints,” in Proc. 

2003 Adaptive Sensor Array Processing Workshop, MIT Lincoln Laboratory, Lexington, Massachusetts, March 11-13, 2003.
2. D. Page, S. Scarborough, G. Owirka and S. Crooks, “Improving knowledge-aided STAP performance using past CPI data,” in 

Proc. 2004 IEEE Radar Conf., Philadelphia, PA, 26-29 April 2004, ISBN No. 0-7803-8235-8.
3. J.D. Hiemstra, “Colored diagonal loading,” in Proc. 2002 IEEE Radar Conf., Long Beach, CA, 22-25 April 2002, ISBN 0-7803-

7358-8.
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Enhanced Convergence Offered By CLEnhanced Convergence Offered By CL--STAPSTAP
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• Localized training as a solution to clutter heterogeneity
• Captures variations in distributed clutter
• May exhibit sensitivity to TSD and clutter discretes

• Localized training as a solution to clutter heterogeneity
• Captures variations in distributed clutter
• May exhibit sensitivity to TSD and clutter discretes

Note: in [2], data are rescaled by eigenvalues capturing multi-CPI clutter RCS 
estimate, dominant subspaces retained from influence of        (to correct errors)ˆ

xR
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Nonlinear STAP ProcessingNonlinear STAP Processing
• Proposed by Farina, Lombardo and Pirri [4-5] to…

– Reduce computational burden, enhance performance in 
heterogeneous clutter environments

• Approach involves taking minimum of outputs of several 
linear filters with pre-selected weights and variable spectral 
width (presumption: clutter ridge location well known)
– Set null location based on PRF, platform velocity and channel spacing

4. A. Farina, P. Lombardo and M. Pirri, “Nonlinear nonadaptive space-time processing for airborne early warning radar,” IEE 
Proceedings- Radar, Sonar Navigation, Vol. 145, No. 1, February 1998, pp. 9-18.

5. A. Farina, P. Lombardo and M. Pirri, “Nonlinear STAP processing,” IEE Elect. & Comm. Eng. Journal, February 1999, pp. 41-48.
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OP

Clutter ModelClutter Model
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Comparison With Measured DataComparison With Measured Data
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Step 1: Estimate Array ManifoldStep 1: Estimate Array Manifold

Requires Doppler centroid, 
performance often very good

Exploit nominally linear phase 
between channels over Doppler, 
non-zero intercept is error

De-trend adjacent 
channel range-
Doppler response

Performance improves as dwell 
increases

Adjacent channels exhibit max. 
overlap in data record

X-corr. adjacent 
channel pairs

Eigenvector spans multiple space-
time signals, performance poor

Same premise as above, average 
over fast- and slow-time

Max. eigenvector, 
spatial covariance

Eigenvector spans multiple space-
time signals, performance poor

Boresight clutter maximally projects 
onto max. eigenvector

Max. eigenvector, 
Doppler Centroid

CommentsPremiseMethod

55 dB0.1°

35 dB1°

29 dB2°

15 dB10°

Null DepthPhase Error

32 dB0.025

26 dB0.05

20 dB0.1

14 dB0.2

Null DepthMagnitude Error
(Relative to 1.0)

30 dB Cancellation
• < 2° phase error
• < 0.025 (0.1 dB) 

magnitude error

30 dB Cancellation
• < 2° phase error
• < 0.025 (0.1 dB) 

magnitude error

KASSPER array calibration goal 
& consequent requirements:

Simple 2-DoF Results:
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Calibration PerformanceCalibration Performance
• Calibration is critical to effective KAPE operation

• Eigenvectors of modeled covariance should maximally project onto actual 
interference subspace

• Cal effectiveness assessed by comparing estimated SINR loss null depth to 
maximum eigenvalue of traditional covariance estimate

• Calibration is critical to effective KAPE operation
• Eigenvectors of modeled covariance should maximally project onto actual 
interference subspace

• Cal effectiveness assessed by comparing estimated SINR loss null depth to 
maximum eigenvalue of traditional covariance estimate

* Synthetic X-band, 6 channel, 32 pulse example used in previous analysis
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* FOPEN data is property of Northrop Grumman Corp.  
Data provided courtesy of Dr. Marshall Greenspan.
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Step 2: Estimate Clutter AmplitudeStep 2: Estimate Clutter Amplitude

• Several strategies
– LS, space-time, single pulse, average over 

pulses
• Issues: computational burden, space-time 

sampling, over/underdetermined LS 
solutions

– Can use beampattern as weighting, but only 
in pseudo-homogeneous regions
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Sampling and Instantaneous ResponseSampling and Instantaneous Response

* Spectra calculated with array error vector
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single trial single trial
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Step 3: Form Candidate Whitening FiltersStep 3: Form Candidate Whitening Filters

• Key factors: array normal, platform velocity, terrain height
• Errors in array normal

– INU/GPS information provided on array normal direction
• MCARM dataset provides array normal as header data, used 

for SAR fire-control, but especially matters when mechanically 
canting array 

• Shift in Doppler centroid, erroneous null locations when 
scanning

• Platform velocity generally known with sufficient accuracy
• DTED provides information on general terrain features

– Excludes discretes, struggles to characterize discontinuous 
surfaces

– Impact is slight in near-sidelooking case (no impact for uncrabbed 
SLAR case)

• Sensitivity analysis previously performed
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Step 4: Choose Best Filter ResponseStep 4: Choose Best Filter Response
• Presumption: parametric covariance matrix adequately models 

clutter environment
• Over number of snapshots, calculate average degree of 

whitening or level of clutter cancellation
• Data normalization is a small concern
• Includes diagonal loading
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Step 5: Estimate Spectral SpreadStep 5: Estimate Spectral Spread
• Temporal decorrelation

– Gaussian over water
– Exponential (Billingsley) over terrain

• For modest bandwidth, spatial decorrelation is negligible
• Caveat: applying CMT to large discretes adversely affects MDV 

(remove large discretes in front-end)
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Step 6: Applying PreStep 6: Applying Pre--FilterFilter

• Store and retain range-varying covariance matrix
– Or retain an averaged version
– Memory requirements

• Provides information to assist in training stage
– Interpolate missing information if necessary

• Gram-Schmidt for fast decomposition

σ= + 2
/ / / /

H H
best k best k best k best k DLKAPE/k c/nR C C d d R I

spectral width null location clutter amplitude

1/ 2 1/ 2;     − −= =k KAPE/k k k KAPE/k kx R x v R v% %
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Performance PotentialPerformance Potential

• Averaged power estimates on left, instantaneous on right
• Same result for averaged covariance matrices

• Apply diagonal loading to modeled clutter covariance matrix
• Estimate accomplished with single range cell
• KAPE can provide improved instantaneous performance

• Seen via detection analysis
• Synthetic X-band, 6 channel, 32 pulse example used in previous analysis

10 deg RMS phase, 
0.5 dB RMS amp.
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Why Include An Adaptive Step?Why Include An Adaptive Step?
• Employ adaptive stage + KA training to…

– Remove any model mismatch
– Enable KA processing only in “troublesome” regions
– Provide flexibility in merging KA and traditional adaptive processing 
– Noise jammer cancellation handled with front-end processor

• Variant of KAPE can provide training kernels
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SummarySummary

• Minimizing covariance estimation errors is focus of 
KAPE
– Direct application of knowledge
– Avoid anomalous response

• KAPE turns matrix estimation into estimation of 
model parameters

• Generally, given ownship navigation data, clutter 
ridge adequately known
– Amplitude, spectral spread, array manifold

• Avoids TSD, potential for better instantaneous 
performance, can be used for screening outliers


