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Discrete EffectsDiscrete Effects
• Heterogeneity challenges

1. Targets in the secondary data (TSD)
2. Discrete returns
3. Amplitude & spectral variations; angle-Doppler non-stationarity, etc.

• Discretes in the training data not so serious
– Contribution of any one discrete is averaged down

• (Unless training is highly localized!)
• Results in mild over-nulling of targets and clutter

– Discretes are rigid; no CNR-induced ICM issues (“iceberg effect”)
• Primary concern is discretes in the CUT

– Discrete itself is under-nulled ⇒ false alarm
– Also generates range-Doppler sidelobes ⇒ multiple false alarms

• Adaptive nulls are twice as deep as necessary, so…
• The discrete problem worsens when distributed clutter power is 

low and discretes are strong ⇒ fine resolutions
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GTRI KAGTRI KA--STAP Flow DiagramSTAP Flow Diagram
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Discrete Mitigation Processing FlowDiscrete Mitigation Processing Flow

• Raw Data CLEAN
– Orthogonal projection in range-Doppler-angle 
– Remove strong discretes prior to adaptive processing

• KAPE
– Scale pre-whitening filter with estimated clutter power
– Suppress discretes (strong and weak?)

• PCT (Power Comparable Training)
– Bins with strong returns tiled together for training
– Suppress weaker (but more numerous) discretes

• AMF CLEAN
– Orthogonal projection based on AMF output
– Remove detections due to discretes
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CLEAN

Post-
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Post-

Doppler
KAPEKAPE PCTPCT AMF 

CLEAN
AMF 

CLEAN
EFAEFA

All 4 methods are 
included for 
development and 
evaluation. Will 
down-select for 
final architecture.
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Discrete Mitigation ApproachDiscrete Mitigation Approach
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CLEAN AlgorithmCLEAN Algorithm
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Traditional and MLE CLEANTraditional and MLE CLEAN
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• Advantages of raw data CLEAN
– Easy to implement, operates in range-Doppler-angle space
– Does not require knowledge of R

• Advantages of maximum-likelihood estimated CLEAN
– Superior parameter estimates (angle-Doppler-amplitude-phase)
– However, complex gain estimator is very sensitive to quality of R
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General Nulling ProcedureGeneral Nulling Procedure

• Information source
– What measurements are used to ID discretes?

• Importance
– Which discretes in the scene are most significant?

• Location
– Where is the discrete in range-angle-Doppler?

• Gain
– What is the amplitude and phase of the discrete?

• Removal
– How do I mitigate discrete returns?
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Estimating Gain, Removing Discrete (1 of 2)Estimating Gain, Removing Discrete (1 of 2)
• Orthogonal projection (nulling) matrix T

– STAP output statistics: y = wHx,     w ∝ R-1s
– CLEAN: y = wH(THx)
– Other techniques: y = (Tw)Hx

• All approaches null in a similar fashion:
– CLEAN:

– Colored loading:

– Constrained optimization:
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Estimating Gain, Removing Discrete (2 of 2)Estimating Gain, Removing Discrete (2 of 2)
• All approaches effectively null 

the CUT data snapshot
• 1st difference

– CLEAN nulls data before
covariance matrix estimation

– Hence, CLEAN removes discretes 
from training data
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ML Estimate
– This can be good or bad, depending on the environment

• 2nd difference
– CLEAN does not perform ML estimate of gain
– However, nulls on discretes are always very deep, so all three 

methods perform about the same
– In addition, MLE is poor if estimate of R is poor

• E.g., an estimate of R from finite samples or with discretes
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Nulling:  Location and ImportanceNulling:  Location and Importance

• Location
– Most methods use the expression at left, find maximum 

in range-Doppler image
– Little change in performance from applying MLE form

• Importance
– Test candidate cells using 1-D (range-only) OS-CFAR

• Operate on discretes only; ignore distributed clutter
– Use MLE form to chose peak

• MLE discretes tend to have greater impact at the 
detector (after EFA, etc.) by several dB

• KAPE can provide the requisite high-fidelity R
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Information Sources for Discrete NullingInformation Sources for Discrete Nulling
• Radar-independent sources

– Maps, photographs
– Data bases
– Useful for general cueing only

• “Discretes may be present”

• Radar-generated sources
– SAR imagery (previously collected)
– Short-dwell data (GMTI CPI)
– Long-dwell data

• E.g., multi-channel SAR collections
• CLEAN on long-dwell data yields a finer null as 

compared to nulling (CLEAN or CL or constraints) 
on short-dwell data sets

Information 
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LocationLocation
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CLEAN Implementation CaveatsCLEAN Implementation Caveats
• Caveat #1: Processing Time

– CLEAN introduces a latency in the processing chain
– CLEAN does not lend itself well to parallel processing

• Caveat #2: Array Calibration
– 2-D space-time nulling requires accurate array calibration
– Alternatively, one can null in Doppler, and blank over all angle

• Caveat #3:  Targets
– Exo-clutter (and strong endo-clutter) targets can be CLEANed
– CLEANed scatterers must be recorded and post-processed

• Caveat #4:  Complex Man-Made Scatterers
– Real discrete returns are not necessarily point-like

• Broad-side flashes
• Collections of multiple under-resolved scatterers

– Can CLEAN iteratively remove such returns without introducing 
residual energy off the clutter ridge?
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Power Comparable Training (PCT)Power Comparable Training (PCT)
• Training implementation of Power Variable Training (PVT)

– PVT generates one covariance matrix estimate
– Then scales clutter subspace with power of current CUT

• PCT
– Sort K range bins (e.g., 1,000) by power
– Partition into L tiles (e.g., 10) by power
– K/L samples per tile (e.g., 100), enough for full-rank covariance
– Estimate covariance matrix and weight vector for each tile
– Apply weight vector to all CUTs in the appropriate tile

⇒ Sort ⇒

Range Bin #

Power

1  2  3 4  5 6  7 8  9 10

1R̂ 10R̂
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PVT and PCTPVT and PCT
• PCT a “poor man’s PVT”

– PCT covariance matrix estimations are well-conditioned
– PCT avoids decompositions and sub-space power measurements
– PVT requires fewer range samples
– PVT mitigates infrequent but strong discretes more aggressively

⇒ Sort ⇒
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P
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Both PVT (top) and 
PCT (bottom) require 
(1) clutter localization 
(e.g. post-Doppler 
implementation), (2) 
snapshots containing 
targets have been 
screened, (3) clutter 
possesses angle-
Doppler stationarity.
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• 6-channel X-band radar
– 64 pulses, 60 MHz BW
– 2.2-meter array
– Side-looking, 80-km range 

• Random discrete distribution
– 30 20-dBsm discretes per km2

– Equi-power (3 x 30-dBsm/ km2, etc.)
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Ordered Statistic (OS) CFAR Ordered Statistic (OS) CFAR 

• OS-CFAR detections
– Candidate return must exceed 

threshold to be declared a discrete
– In this way, CLEAN avoids 

operating on distributed clutter

• R-D Map / CFAR threshold
– Candidate returns examined 

relative to other returns
– Provides stopping criterion for 

CLEAN
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CLEAN RangeCLEAN Range--Doppler Maps Doppler Maps 

• CLEAN results
– No clutter suppression (raw data)
– 50 iterations (50 discretes removed)
– Weaker discretes and distributed 

clutter remain

• Discrete locations
– Clutter ridge is apparent
– IMU-derived array normal is 

required to differentiate slow 
movers from discretes in low 
clutter areas
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Example EFA AMF ImagesExample EFA AMF Images
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CLEAN & PCT ExceedancesCLEAN & PCT Exceedances
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• CLEAN plus PCT
– PCT used 10 tiles of 100 bins each
– CLEAN ran until all OS-CFAR detections removed ⇒ 50 iterations
– Meets PFA of ~1x10-5 at ~15 dB threshold

• Baseline processing
– EFA, 3 Doppler bins
– 100-bin sliding 

window
– Exclude CUT and 

guard cells from 
training
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• Local training and PCT both used 100 bins
– PCT increased average loss less than 1 dB

• CLEAN operated on only 50 bins
– Manifested as highly-localized SINR-loss nulls
– CLEAN increased average SINR loss about 0.1 dB
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SummarySummary

• GTRI’s KASSPER architecture “accommodates” four 
different approaches to discrete mitigation
– Raw data CLEAN, KAPE, PCT, AMF CLEAN
– PCT and CLEAN complement one another

• Summary of knowledge sources used by CLEAN
– Long-dwell (SAR) data
– Array calibration
– Array pointing vector and absolute power calibration to distinguish 

targets from discretes
– KA-generated R for MLE CLEAN (primarily the importance stage)

• CLEAN knowledge products
– Array calibration (Phase Gradient Autofocus approach)
– Clutter angle-Doppler support

Raw Data 
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Raw Data 
CLEAN

Post-
Doppler
Post-

Doppler
KAPEKAPE PCTPCT AMF 

CLEAN
AMF 

CLEAN
EFAEFA
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Future WorkFuture Work
• Examine performance of techniques on standard data sets

– KASSPER Data Cubes
– TUXEDO (Camp Navajo)

• Evaluate relative benefits of the techniques
– Both stand-alone and in combination
– Down-select for final configuration

• KAPE is a given, so the question will be:
• What are the benefits of CLEAN, PCT, and AMF CLEAN, and 

what is their impact on processor, memory, and latency???

• CLEAN variations
– Impact on area coverage rate of angle blanking (instead of nulling)
– Decomposition that is more accurate, lower order, and efficient

• Frequency dithering (SCHISM), RELAX, etc.
– Parametric impulse response for flashes, etc.


