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Background

• The desired approach is to cancel the known interference 
component (data pre-conditioning)

– Full ground clutter model
– Discretes
– Jammers/RFI

• Follow up with adaptive processing will require fewer DoFs
• This form does not readily “fit” existing data domain STAP 

implementations
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Pre-Filter

• Pre-filter can be something relatively simple like a known 
discrete (derived from land cover or SAR image)

• Or something more complex like a full ground clutter 
covariance model

• Or a combination of both
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Data Domain STAP

• Problem is to solve linear system of equations to get the 
weight vector:

• Since the sample covariance is typically Hermitian and 
positive definite one approach is to find its Cholesky 
decomposition

• The matrix C is lower triangular so the solution can be 
readily found using a forward and backward substitution  
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Data Domain STAP (cont.)

• It turns out that C can be found without forming the sample 
covariance by performing a QR decomposition (Q unitary, R upper 
triangular) on the data matrix directly

• In this case R is upper triangular and equivalent to the Cholesky 
decomposition of Rs so it can readily be used to solve for the 
weight vector (see previous slide)

• It is possible to compute R without explicitly finding Q which saves 
significant computations

• Diagonal loading can be included by simply augmenting the data 
matrix

• In general any solution that adds a positive semi-definite matrix to 
the covariance can be implemented by an appropriate 
augmentation of the data matrix in the data domain implementation

HHH
s

H RRQRQRXXRQRX ===⇒= )()(

[ ] IRXXRIXX β+==⇒β= s
H
aaLsa ,



KASSPER-04/04 - 8

STAP Algorithm Partitioning Example

CACFAR
threshold

etc.

Multi-channel
IQ data

Pulse Compression
Doppler Processing

Beamforming

Doppler bin 1
data domain STAP

Doppler bin 2
data domain STAP

Doppler bin M-1
data domain STAP

Doppler bin 3
data domain STAP

Doppler bin 4
data domain STAP

Doppler bin M
data domain STAP
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Assumptions:

2 Doppler bins are 
processed per node

PRI-staggered
post-Doppler STAP

detections
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Reduced-DoF STAP
• For many systems it is not possible to use full-DoF STAP 

due to limited computational resources and sample support
• A common approach is to break the full-DoF problem into a 

number of smaller reduced-DoF problems via an NMxD (D < 
NM) transformation Hm on the data:

• The transformation Hm can also be applied to the clutter 
covariance model and thermal noise:

• As an example, multi-bin element space post-Doppler STAP

xHx H
mm =

mc
H
mmc HRHR =,

vHv H
mm =

mmm vRw 1−κ=

m
H
mmy xw=

mn
H
mmn HRHR =,

NMxNMn IR = DxDm
H
mmn IHHR ==,

thermal
noise

covariance



KASSPER-04/04 - 11

Knowledge-Aided Quadratic Constraints
Reduced-DoF STAP

• We can incorporate the reduced-DoF covariance model as a 
quadratic constraint

• Gives:

• Same form as full-DoF case
• Can also be shown to be a prefilter on the reduced DoF

data
• Can be implemented in the data domain

want weights to be 
“orthogonal” to the 
reduced-DoF a 
priori clutter model

this is the KA part

“colored loading”
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• Colored loading beamformer can be expressed as:

• This filtering solution is equivalent to deterministic pre-
filtering followed by adaptive processing (i.e., 2 stages)

Pre-Filter Interpretation
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it will generally be easier to estimate the 
interference covariance of the pre-
filtered data than the original data 
because it is likely to have a lower 

effective rank
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Data Domain Implementation

• Typically, the loading matrix Qm is Hermitian and positive-
definite so that its Cholesky decomposition exists

• Can be efficiently implemented in the data domain by 
augmenting data matrix and using QR decomposition

• Thus, pre-filter approach implemented as colored loading 
actually “fits” existing STAP computing architectures (if they 
already employ data domain processing with diagonal loading)
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Architecture

compute & apply
adaptive weights CACFAR

threshold
etc.

“generic” STAP Nodes

loading/augmentation
matrix calculation

?

•knowledge sources/database
• terrain
• SAR images
• other?

•look-ahead scheduling/processing

pulse compression
Doppler processing

beamforming

KA Nodes

receive augmentation
matrix and append
to data prior to QR

bandwidth?

minor modifications to existing softwareexisting software new software

Radar Signal Processor
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Loading Matrix
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Loading Matrix

• For now assume that the elements required to compute the 
loading matrix are known (steering vectors and power 
coefficients)

• Computations to compute loading matrix and perform 
Cholesky decomposition:

• Computations to compute QR decomposition of data matrix 
augmented with Cholesky factor of loading matrix:

• Cost of computing loading matrix and its Cholesky
decomposition is expensive especially if it changes vs. 
range
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Loading Matrix

• Since we want the augmentation to result in both colored 
and diagonal loading components 

• Augmenting the data matrix with the scaled steering vectors 
and identity matrix directly will give the desired result

• Computations to compute QR decomposition of this 
augmented data matrix:

• Results in a savings of ~(4/3)D3 computations per range and 
Doppler bin

• Moves major computational burden to the STAP nodes
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Loading Matrix (updating)
• In practice it has been found that a single colored loading 

matrix for underlying distributed ground clutter will work 
over large range swaths for stand-off geometries

• Thus, the augmentation matrix will occur once for ground 
clutter

• However, it will likely be desirable to include contributions 
from discretes (e.g., derived from SAR images) at various 
range bins

• This can be accommodated by simply augmenting the new 
data matrix with an extra column

• Adding (or subtracting) a column and updating the QR 
decomposition can be done efficiently

• In fact an updating procedure will probably be available to 
accommodate sliding window/hole training strategies

[ ]dIVXX βββ= Lmmdma ,
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of a discrete
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Bandwidth Requirements

• Assumptions:
– One complex DxPc loading/augmentation matrix is required per 

Doppler bin per CPI
– 128 pulses with 2x oversampling 256 Doppler bins
– 100 ms CPI length
– 6 DoFs and 20 patches
– Double precision real and imaginary data

• Bandwidth required to communicate augmentation matrices

• May want to only apply this technique to a small number of 
Doppler bins

• Move some of the calculations onto the STAP nodes?
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Summary and Future Work

• Data domain STAP was reviewed based on QR 
decomposition of the data matrix

• Adding matrix to covariance can be implemented in the data 
domain by augmenting the data matrix

• Pre-filtering is equivalent to colored loading offers an 
efficient way to implement in existing data domain STAP 
beamformers

• Alternatives for computing the augmentation matrix were 
considered direct augmentation with covariance model 
steering vectors appears to be most efficient

• Bandwidth requirements appear reasonable
• Next step is to begin coding the technique for integration on 

the KASSPER test bed computer
• Continue to assess performance gains of knowledge-aided 

beamforming KASSPER data sets and Tuxedo data


