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• Heterogeneous Clutter
– Rapidly varying terrain

• Mountainous (rapid elevation/reflectivity variation)
• Rapid land cover variations (e.g., littoral)

• Dense “Target” Backgrounds
– “Moving Clutter”

• Military/civilian vehicles 

• Large Discretes and “Spiky” Clutter
– Urban clutter
– Power lines, towers, steep mountainous terrain

• Range-Varying (Nonstationary) Clutter Loci
– Bi/Multistatics
– Nonlinear array geometries (e.g., circular arrays)

When is There a Problem?
Extremely suboptimal radar performance can occur if one or more of the following occurs: 

(High false alarm rates and/or low Pd)

One or More of the Above is Almost Always Present in Real-World Ops!
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Serious Performance Impacts!!

• MWF and PCI : 40 DoFs and 100 training samples
• Post-Doppler: 3 bins, 11 elements (33 DoFs) and 66  training 

samples 
• MWF SINR loss only computed for a single range bin due to 

computational requirements
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MDV is Critical
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GMTI “Dead Zone”

SA
R

/C
C

D

Normalized Doppler

R
an

ge

0 +PRF/2-PRF/2

GMTI

Domain of TCTs!
MDV

• GMTI = Wide Area Search & Track 
of Moving Targets

• SAR/CCD = “Soda Straw” 
Coverage for Stationary Targets

• Birth-to-Death Tracking 
Requires Both

– Seamless Integration of GMTI & 
SAR Modes

– Current systems have extremely 
poor MDV performance in 
challenging clutter/background 
environments

• MDV is key to tracking of TCTs
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What are the Problems?
• Current systems implement highly restrictive adaptation techniques

– Require environment to remain “stationary” and “homogeneous” during 
“adaptation” (e.g., CACFAR, STAP)

– Significant performance degradation in “complex” interference 
environments

• Only suboptimal piecemeal “patches” to problem have been considered
– No potential solutions exist that comprehensively address the totality of issues

• Fundamental shift in the basis for adaptation required
Conventional Adaptive Radar
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Key Technology Leaps
• Look-ahead scheduling architecture

• Real-time knowledge-aided processing algorithms

Conventional Sensor Signal Processing
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Parmeter Value 
RF frequency 10000 MHz 

Bandwidth 10 MHz 
PRF 2000 Hz 

Peak Power 10 kW 
Duty factor 10% 
Noise figure 5 dB 

System losses 7 dB 
Platform speed 150 m/s 
Platform altitude 7 km ASL 
Receive aperture 1.425 m x 0.285 m 

Number of subarrays 12  
crab ~3 degrees 

Number of Pulses 38 
 

Conventional Potential KASSPER Performance
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FY04: Enabling KASSPER Architecture

Results

Sensor DataINS, GPS, etc

Knowledge Database

Off-line Knowledge Source (DTED, VMAP, etc)

Signal
Processing

Look-ahead
Scheduler

Data
Processor

(Tracker, etc)

How to Implement in Real-Time?
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Right Knowledge, Right Time

Platform field 
of view (FOV)

Boundary tiles 
(outside FOV)

FOV tiles 
(inside FOV)

Geographic knowledge management

New boundary tiles 
loaded to cache from 
mass storage

Discard old boundary tiles 
from cache

• Geographic knowledge is segmented into tiles processed independently
• New tiles needed every 380sec for 100KM2 tiles and 510kt 

As platform moves…

Intelligent processor resource scheduling

Measurement Waveform Algorithm

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.

Interpretation

WB-GMTI

NB-GMTI

LC-GMTI

SPOT-SAR

NB-STAP

LC-STAP

KA-LC-STAP

KA-SAR

WB-KA-STAP

FOV 
scan

Target
Track

Area of 
interest

Time
Critical

TRACKER

IMAGE
ANALYSIS

Road
scan

Decision

C
ho

ic
e

Time

Choosing a measurement pushes the 
remaining measurements to “later”

A choice needing “too much” processing 
is OK if average load is within bounds

ALL required measurements must be made
In some order
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KA CalibrationData-Derived KA Pre-Whitening Actual & Estimated Clutter Spectra

Knowledge Aided-STAP Architecture

KA pre-filter Discrete 
Matched Filter

Lower-order 
STAP

Training DataIn Situ Database (data-derived, ownship
metrology)

Cultural Database
(terrain features, digital elevation)

Kx Kx~ Kx
Ky

Enabling Advanced STAP Architectures
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Reduced Sample Support

Equivalent to 2-stage 
filter: deterministic 
followed by adaptive

want weights to be
“orthogonal” to a priori
clutter model 
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Knowledge-aided techniques developed and applied to KASSPER Data Set 2

Improved Pd and Pfa for Tracking
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False alarm density at 
Pd=60%:

Standard STAP: 50/km2

KASTAP: 2/km2

SINR Loss Comparison (CPI 22)

Range Index

Doppler Index

Range Index

Standard STAP KASTAP

• Geo-registration and adaptive combination of multiple-CPI 
data-cubes to form earth-referenced clutter reflectivity maps

• Adaptive estimation and correction for angle-dependent gain 
and phase errors in each antenna channel

• Calculation of current-CPI clutter covariance matrices using 
reflectivity maps

• Range-Doppler masking to reduce the effects of target 
contamination of KASTAP training data

• Knowledge-aided pre-whitening and eigenvalue rescaling 

ALPHATECH, Inc.
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FY05: Real-Time Demonstration

• Demonstrate intelligent “look-ahead” resource 
scheduling

– Recognizing and preloading pertinent data into cache
– Performing predictive a priori data adaptation (i.e. generate 

clutter pre-whitening mask for covariance matrix and discrete 
detection from low-resolution SAR imagery)

– Real-time, “look ahead” processor resource management

• Demonstrate real-time data operations in front-end 
signal processing

– Multiple manipulations of the covariance matrix within 
processing latencies

• Demonstrate > order of magnitude improvement over 
classical STAP

– >10dB improvement in Pd and Pfa

– Detection and tracking of targets in the GMTI “Dead Zone”! 
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Next-Gen KASSPER HPEC Testbed

• Architecture:
– Base computer and I/O cards 

purchase order completed
– Lab computer configuration complete
– Various processing concepts in 

review
– PDR planned for late June 03
– Demonstration at DARPATech 04

• Parallel Vector Library (PVL) chosen 
for open standards programming 
language

– LL reviewing initial KASSPER 
algorithms for library impacts

– Coding started on basic radar signal 
processing components (pulse 
compression, data retrieval, etc.)

– Algorithm developers will program 
the hardware

Vendor
Hardware

Portable
Library

Maps

Application
Code

Vendor
Software

Open standards for real-
time processing

MP-510 mercury 
processing

Multiple high-
speed RAID drives

ASIC high-speed cache 
memory devices

Vendor
Hardware

Application
Code

Vendor
Software

• Upgrades restricted to hardware 
remapping & new features
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Real-time Demonstration Processor

SAR AlgorithmsSAR AlgorithmsGMTI Algorithms

SAR AlgorithmsSAR AlgorithmsSAR AlgorithmsSAR Algorithms

Sensor
Data

INS, GPS, etc

Knowledge Database

Look-ahead
Scheduler Data

Processor
(Tracker, etc)

Command

Pre-mission Data Load

Data Input

Data Output

Off-line Knowledge Source

CPU
Load
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FY05: Transition

• Government owned real-time demonstration testbed and off-line 
algorithm analysis suite

– Signal Processing Evaluation, Analysis & Research (SPEAR) Facility
– AFRL/SN providing FY06 funds to continue KASSPER technologies and 

annual workshop

• Platform focused simulation and design at Prime contractors
– Supports specific platform transition while educating contractors and 

government program office
– Focusing on Joint STARS, JSF, MP-RTIP, SBR, and ASARS

• Annual workshops keeping technology in forefront
– Advanced concept and implementation work on-going at non-KASSPER 

contractor, government agencies, and universities
– DARPA/AFRL workshops providing focus via KASSPER architecture
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Objective
Develop Knowledge-Aided (KA) Signal Processing Techniques for Conventional & Future 

GMTI Sensors Such as JSTARS, GH, MP-RTIP, MC2A & SBR
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KASSPER:
“It’s an Architecture, NOT an Algorithm”

KASSPER is an architecture for real-time adaptation of 
multidimensional sensor systems in real-world environments

KASSPER is an architecture for real-time adaptation of 
multidimensional sensor systems in real-world environments

• KASSPER Architecture
– Environmental context is key to efficient adaptation

• Sensors, like humans, benefit from context!
– Key enablers: “look-ahead” scheduling and resource allocation 
– Multiresolution philosophy: blurring the boundaries between SAR 

and GMTI
– KASSPER as a modern manifestation of the “Bayesian” method!

• KA-STAP Bayesian STAP
• The DARPA KASSPER Challenge: Creatively explore the 

possibilities
– Re-examine entire adaptive signal processing paradigm with an eye 

towards maximizing knowledge-aided “robust” methods
– Robust STAP algorithms AND KASSPER architecture

• Environmental knowledge base is “read/write”
– What is “implementable”? 2010? 2020?
– Environmentally aware sensors have a future!
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– Key enablers: “look-ahead” scheduling and resource allocation 
– Multiresolution philosophy: blurring the boundaries between SAR 

and GMTI
– KASSPER as a modern manifestation of the “Bayesian” method!

• KA-STAP Bayesian STAP
• The DARPA KASSPER Challenge: Creatively explore the 

possibilities
– Re-examine entire adaptive signal processing paradigm with an eye 

towards maximizing knowledge-aided “robust” methods
– Robust STAP algorithms AND KASSPER architecture

• Environmental knowledge base is “read/write”
– What is “implementable”? 2010? 2020?
– Environmentally aware sensors have a future!


