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Abstract— The multistage Wiener filter (MWF) is a reduced
rank adaptive signal processing algorithm applicable to air-
borne radar space-time adaptive processing (STAP). This paper
discusses techniques for augmenting the MWF in order to
exploit pre-existing environmental knowledge. We consider a
priori knowledge such as known fixed interferers as well as the
information contained in previously computed adaptive solutions.
Two approaches are presented. The first approach is based on
existing linear constraint techniques. The second approach is
based on non-zero initialization of the CG-MWF implementation
of the MWF. We evaluate the performance of both algorithms
under ideal conditions, such as perfect knowledge and stationary
data, as well as perturbed conditions.

I. INTRODUCTION

The multistage Wiener filter (MWF) is described in [1] in
its most general form as an unconstrained filter. This form
serves as the basic filtering engine across a whole spectrum
of adaptive signal processing applications. In this paper we
describe methods for augmenting the MWF in order to take
advantage of pre-existing environmental knowledge. We con-
sider two different classes of prior knowledge. In the first case
we consider interference sources that are known a priori such
as might be the case for known fixed transmitters or clutter
reflections predicted from digital terrain data bases. We refer
to this class of problem as “Knowledge-Aided MWF”. In the
second case we take advantage of the information contained
in previously computed adaptive solutions to constrain or
initialize our new solutions. We refer to this case as “Recursive
MWF”.

There are several ways to insert prior knowledge into
the MWF. The first approach that we describe uses linear
constraints in the context of the generalized sidelobe canceller.
We use both directional null constraints and quiescent pattern
constraints. We also describe a newer method for inserting
knowledge into the MWF. It has recently been shown that
the MWF can be implemented via the method of conjugate
gradients (CG) [2], [3]. In this implementation, referred to
as CG-MWF, the filter is initialized with a starting weight
vector. This initial weight vector can be the zero vector if no
prior knowledge is available, or it can be nonzero to reflect
a priori knowledge. We exploit this structure to implement
Knowledge-Aided MWF and Recursive MWF. This paper
describes and evaluates these algorithms.

II. APPROACH

A. Linearly Constrained MWF

1) LC-MWF Background: In this section we review the lin-
ear constrained minimum variance (LCMV) beamformer1 and
show how we can similarly apply multiple linear constraints
to the multistage Wiener filter. The minimum variance distor-
tionless response (MVDR) beamformer solves the following
constrained minimization

w(mvdr) = arg min
wHs=1

E
[

|wHxi,n|
2
]

, (1)

where xi,n are interference-plus-noise training snapshots (i.e.,
target-free training), s is the unit-norm steering vector, and
there is a single linear constraint wHs = 1. The well-known
solution to (1) is

w(mvdr) =
R−1

x s

sHR−1
x s

, (2)

where Rx = E
[

xi,nxH
i,n

]

is the covariance matrix.
The MVDR beamformer is a special case of the more

general LCMV beamformer which is defined by the following
minimization

w(lcmv) = arg min
wHC=gH

E
[

|wHxi,n|
2
]

, (3)

where C is an N × Nc constraint matrix that contains Nc

constraint vectors, and g is an Nc ×1 vector that specifies the
values of these constraints. The solution to (3) is

w(lcmv) = R−1
x C

(

CHR−1
x C

)−1
g. (4)

Equation (4) is the direct form processor solution. The LCMV
beamformer can also be implemented as a generalized sidelobe
canceller (GSC) [5]. The GSC, shown in Figure 1, divides
the N -dimensional solution space into a constraint subspace
and a subspace that is orthogonal to the constraint subspace.
The constraint subspace is defined by the columns of C. The
subspace orthogonal to the constraint subspace is defined by
the columns of the blocking matrix B where

B = null
(

CH
)

, (5)

i.e.,
CHB = 0. (6)

1The LCMV beamformer is well known. Our discussion follows [4].
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Fig. 1. The Generalized Sidelobe Canceller Implementation of the LCMV
Beamformer.

The projection of (4) onto the constraint subspace is given by
the quiescent weight vector

wq = C
(

CHC
)−1

g. (7)

Many different types of linear constraints have been de-
veloped for the LCMV beamformer. We consider directional
constraints and quiescent pattern constraints. The distortionless
constraint of the MVDR beamformer, wHs = 1, is one
example of a directional constraint. We are interested in
directional null constraints that enforce beampattern nulls in
the direction of known interference sources

wHsj = 0, (8)

where sj is the steering vector in the direction of the jth

interferer. Combining the distortionless constraint with Nj null
constraints yields the following C matrix and g vector

C =
[

s s1 s2 · · · sNj

]

, (9)

gH = [1 0 0 · · · 0] . (10)

We apply directional constraints to Knowledge-Aided LC-
MWF.

We are also interested in “quiescent pattern” constraints.
There are several different approaches for quiescent pattern
constraints. We consider the approach in [6] which utilizes two
linear constraints. The first constraint imposes the quiescent
response

wHw̄dq = 1, (11)

where
w̄dq =

wdq

wH
dqwdq

, (12)

and where wdq is the desired quiescent pattern. The second
constraint protects the desired signal from being cancelled by
the adaptive filter2

wHcs = 0, (13)

where
cs = P⊥

w̄dq
s, (14)

2The constraint in (13) protects a point. A broader region in angle/frequency
space can be protected using additional constraints as described in [6].

where P⊥

w̄dq
is the projection matrix orthogonal to Pw̄dq

and
where Pw̄dq

is the projection matrix with respect to w̄dq . Thus

P⊥

w̄dq
= I −

(

w̄dq

(

w̄H
dqw̄dq

)−1
w̄H

dq

)

. (15)

The resulting C matrix and g vector are given by

C = [w̄dq cs] , (16)

gH = [1 0] . (17)

Note that the upper path of the GSC still contains wq

computed via (7) based on C and g above in (16) and (17)
and should not be confused with wdq or w̄dq . Similarly the
blocking matrix is still found from (5). We apply quiescent
pattern constraints to Recursive LC-MWF.

The development above was specifically based on the
LCMV beamformer defined by the minimization of (3). This
is a full rank beamformer — Nc constraints plus N − Nc

adaptive degrees-of-freedom. All of the analysis, however,
carries over directly to the reduced rank MWF via the GSC
architecture. That is, through inspection of Figure 1 we see
that we can enforce the linear constraints in the same manner
through wq and B and use the MWF for the solution to the
unconstrained filter, wa, that lies in the subspace orthogonal
to the constraint subspace. We refer to the MWF with multiple
linear constraints as LC-MWF.

2) Knowledge-Aided LC-MWF: When the locations of in-
terference sources are known a priori we can apply linear null
constraints to the multistage Wiener filter as described above.
We refer to this approach as Knowledge-Aided LC-MWF.

3) Recursive LC-MWF: We next consider the use of quies-
cent pattern constraints for Recursive LC-MWF. We process
an initial block of K0 data snapshots (e.g., K0=1N ) at
time τ0 using the standard MWF algorithm with only the
distortionless constraint. Then we receive another block of K1

data snapshots (e.g., K1=1N ) at time τ1. We run the LC-MWF
algorithm using the best weight vector computed at time τ0

as our desired quiescent pattern, i.e., wdq . We refer to this as
the “first recursion” since it is the first time that weight vector
feedback was used. We repeat this process as many times as
desired using the relation

wdq(τi+1) = w(rbest)(τi). (18)

We refer to the LC-MWF algorithm using (18) as Recursive
LC-MWF.

B. The CG-MWF Algorithm

The relationship between the MWF and CG weight vectors
was described in [2]. We refer to implementations of the
MWF using conjugate gradient techniques as CG-MWF. Here
we implement the MWF algorithm using the CG recursions
in order to take advantage of a desirable property of CG,
namely, the structure allowing for a non-zero initialization
of the weight vector. Note that there are many different
implementations of the CG algorithm. In connection with
(nonsymmetric) least squares problems (Ax = b) the CG
method is applied to the normal equations AHAx = AHb.



One popular and stable CG implementation for the normal
equations is conjugate gradient least squares (CGLS) [7]. The
Wiener-Hopf equation takes the form of the normal equations
for the case of estimated statistics. That is, we solve

R̂x0
wa = r̂xd, (19)

where
R̂x0

=
1

K
X0X

H
0 , (20)

and
r̂xd =

1

K
X0d

H
0 . (21)

Substituting (20) and (21) into (19) yields

X0X
H
0 wa = X0d

H
0 . (22)

We consider CGLS applied to (22) in this paper. The CGLS
recursion equations are presented in Table I [7].

TABLE I
CGLS RECURSION EQUATIONS.

wa Computed Via

αi =
‖X0t

(i−1)‖2

‖XH
0 a(i−1)‖2

w
(i)
a = w

(i−1)
a + αia

(i−1)

t
(i) = t

(i−1)
− αiX

H

0 a
(i−1)

βi =
‖X0t

(i)‖2

‖X0t
(i−1)‖2

a
(i) = X0t

(i) + βia
(i−1)

Initialized With

Starting vector w
(0)
a

t
(0) = d

H

0 − X
H

0 w
(0)
a

a
(0) = X0t

(0)

1) Knowledge-Aided CG-MWF: We now consider the case
where a priori knowledge of the interference environment
is available to the filter. We insert this knowledge using the
following relation

w(0)
a = w(dq)

a , (23)

where w
(dq)
a is the desired quiescent pattern that reflects all

of the a priori knowledge. We refer to CG-MWF initialized
with (23) as Knowledge-Aided CG-MWF.

2) Recursive CG-MWF: We also consider the case where
data observations become available with time. We process an
initial block of K0 data snapshots (e.g., K0=1N ) at time τ0

using the CG-MWF algorithm with w
(0)
a (τ0) = 0. Then we

receive another block of K1 data snapshots (e.g., K1=1N )
at time τ1. We run the CG-MWF algorithm again, this time
using w

(0)
a (τ1) = w

(rbest)
a (τ0), where w

(rbest)
a (τ0) is the best

weight vector computed at time τ0, i.e., at the best rank. We
refer to this second run of the CG-MWF algorithm as the “first

recursion” since it is the first time that weight vector feedback
was used. We continue adding additional recursions as desired
using the relation

w(0)
a (τi+1) = w(rbest)

a (τi). (24)

We refer to the CG-MWF algorithm using (24) as Recursive
CG-MWF.

III. SIMULATION RESULTS

A. Scenario Description

We evaluate the algorithms in this paper for spatial array
processing. We consider an adaptive array having 32 elements
with half-wavelength spacing, steered to broadside. There are
25 noise jammers at randomly selected locations and power
levels, as shown in Figure 2. We consider K=1N=32 training
samples of target-free data and 1000 Monte Carlo trials.
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Fig. 2. Jammer Locations and Power Levels.

B. LC-MWF

We first evaluate Knowledge-Aided LC-MWF. We assume
that 10 of the 25 jammers come from known directions and
place null constraints in these 10 directions. Figure 3 shows
the resulting performance under the assumption of perfect
knowledge of the jammer directions. We see that the MWF
is now able to reach its best performance at rank 15 as
opposed to 25 in the baseline case. Thus we have productively
partitioned the solution subspace into quiescent and adaptive
subspaces due to the high (i.e., perfect) quality of our a priori
knowledge. We also see in Figure 3 that the mean square error
(MSE) for the LC-MWF solution is 2.9 dB better than for the
baseline case. This is because the LC-MWF processor has
perfect knowledge of 10 of the jammer directions while the
baseline MWF processor has to rely on statistical estimates.

Next we examine the more practical case where the a priori
knowledge is imperfectly known. We perform a sensitivity
study and look for the breakpoint in required accuracy. Fig-
ure 4 shows the performance for five different error levels in
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Fig. 3. Knowledge-Aided Linear Constrained MWF, Perfect Knowledge.

the assumed jammer directions, ranging from 1/2 to 1/100th

of a half-power beamwidth3. We see that performance is
quite sensitive to these errors. Even one-sigma errors of
only 1/50th to 1/100th of a half-power beamwidth provide
noticeable performance degradation in both the best MSE and
the required number of adaptive stages. By the time the one-
sigma errors have reached 1/20th of a half-power beamwidth
the best MSE has deteriorated by 2 dB relative to the baseline
and thus Knowledge-Aided LC-MWF is no longer productive.
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Fig. 4. Sensitivity of Knowledge-Aided LC-MWF to Jammer Direction
Errors.

We next evaluate Recursive LC-MWF. Figure 5 shows the
results for the baseline, 1st recursion, 2nd recursion, and
10th recursion for stationary data. We see that for all the
recursive cases the filter indeed leverages the performance of
the previous weight vector and immediately provides excellent

3We refer to the half-power beamwidth of a 32 element array with uniform
weighting.

performance. Note that for the 1st recursion the best rank is
not literally at a rank of 1. This is consistent with the fact that
w(rbest)(τ0) 6= w(opt) but rather is the best approximation
supported by the specific training samples provided. However,
as the number of recursions increases the best rank tends
toward 1 and the MSE performance level gradually approaches
that of the optimal MMSE performance.
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Fig. 5. Recursive MWF using a Quiescent Pattern Constraint, Stationary
Data.

We next examine the sensitivity of Recursive LC-MWF
to the stationarity of the environment. Clearly if the inter-
ference environment changes from one recursion to the next
performance will degrade. We examine the gracefulness of
this degradation. We consider cases where jammers are either
deleted or added to the baseline interference environment be-
tween times τ0 and τ1. For simplicity we examine performance
with just a single recursion.

First we examine performance for the case of deleted
jammers. At time τ0 we implement the standard MWF us-
ing observations containing 25 jamming signals at the same
locations and power levels as shown in Figure 2. At time τ1

we execute Recursive LC-MWF constrained by w(rbest)(τ0)
but using observations that reflect the deletion of 0, 1, 2, or
3 jammers. The deletion of jammers has virtually no impact
on the performance. Excellent performance is achieved in the
first recursion for each of these cases (not shown). This is not
a surprising result since the presence of extraneous nulls in
the desired quiescent pattern is not disruptive.

In Figure 6 we examine performance for the case of
additional jammers. At time τ0 there are 25 jammers at the
same locations and power levels as shown in Figure 2. At
time τ1 we process data that reflects the addition of 0, 1,
2, or 3 jammers. The additional jammers have the same
characteristics as the original 25 jammers. That is, they are
randomly determined with the restrictions that they lie outside
the main beam and have jammer-to-noise ratios between 20
and 50 dB. We see in Figure 6 that the addition of jammers has
a negative impact on the performance, as one would expect



since the new jammers are not nulled in the constraint sub-
space. Additionally, however, we see that the filter requires a
full 25-27 adaptive stages in order to recover best performance.
Thus an entirely new adaptive subspace solution is needed
even though the interference environment has changed only by
1 to 3 jammers. This is an unfortunate property. However, the
amount of adaptive processing required is no more than if the
standard MWF had been used. Thus in abruptly nonstationary
environments we are neither better off nor worse off for having
used Recursive LC-MWF.
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Fig. 6. Sensitivity of Recursive LC-MWF to Nonstationary Data – Certain
Jammers Absent at Time τ0 but Turned On at Time τ1

C. CG-MWF

We evaluate CG-MWF in a similar manner to LC-MWF.
We first examine Knowledge-Aided CG-MWF and consider
the case of perfect knowledge of all 25 interference sources
(directions and power levels). This is an unrealistic assump-
tion, of course, but represents a bounding case. Figure 7
shows the results. We see that the filter is able to achieve the
minimum MSE immediately at rank 1 (no adaptive stages).
As adaptive stages are added the performance degrades due to
overadaption.

Next we examine the sensitivity of this approach to im-
perfections in our knowledge of the interference environment.
We search for the breakpoint that determines how accurately
a priori knowledge must be known in order for it to be
productive. We consider two types of imperfections, errors in
interference directions and errors in interference power levels.
Figure 8 shows the performance as a function of errors in
our knowledge of the interferer directions. We consider one-
sigma errors of 1/10, 1/20, 1/50, and 1/100 of a half-power
beamwidth. We see that the breakpoint appears to be at a
one-sigma level of about 1/20th of a half-power beamwidth.
When errors are small relative to this level, quiescent pattern
initialization is quite productive. The mean square error (MSE)
achieved is superior to that achieved in the baseline case and
fewer adaptive stages are required. Conversely, when errors
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Fig. 7. Performance of Knowledge-Aided CG-MWF with Perfect Knowledge.

are large relative to this level then the benefit of initialization
is diminished. We do note, however, that w

(q)
a initialization is

not counterproductive. Even with large errors the number of
required adaptive stages does not exceed that for w

(0)
a = 0,

and the MSE at best rank is the same.
Figure 9 presents the results when there are errors in

the interference power levels (e.g., as might be caused by
multipath fading). Here we see that the breakpoint appears at
a one-sigma error level of between 10 and 15 dB. Below this
level the performance advantage is significant. Above this level
the utility is diminished. Again we note that the performance
with poor a priori knowledge in terms of best MSE and
required number of stages does not deteriorate relative to the
baseline case.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Rank

M
ea

n 
S

qu
ar

e 
E

rr
or

 (d
B

)

Baseline, w
a
(0)=0

K−Aided, σ
u
=θ/10

K−Aided, σ
u
=θ/20

K−Aided, σ
u
=θ/50

K−Aided, σ
u
=θ/100

Perfect A Priori Knowledge
MMSE
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We next evaluate Recursive CG-MWF. Figure 10 shows
the results for the baseline, 1st recursion, 2nd recursion, and
10th recursion for stationary data. We see that for all the
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recursive cases the filter indeed leverages the performance of
the previous weight vector and provides excellent performance
with no (or few) adaptive stages required. As the number of
recursions increases the best rank tends toward 1 and the MSE
performance level gradually approaches that of the optimal
MMSE performance.
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Stationary Data.

We next examine the sensitivity of Recursive CG-MWF
to the stationarity of the environment. Clearly if the inter-
ference environment changes from one recursion to the next
performance will degrade. We examine the gracefulness of
this degradation. We consider cases where jammers are either
deleted or added to the baseline interference environment be-
tween times τ0 and τ1. For simplicity we examine performance
with just a single recursion.

First we examine performance for the case of deleted
jammers. At time τ0 there are 25 noise jammers at the same
locations and power levels as shown in Figure 2. At time

τ1 we process data that reflects the deletion of 0, 1, 2, or 3
jammers. The initialization at time τ1 is again with w

(0)
a (τ1) =

w
(rbest)
a (τ0). The deletion of jammers has virtually no impact

on the performance. Excellent performance is achieved with
the recursion (not shown). This is not a surprising result since
the presence of extraneous nulls in w

(0)
a (τ1) is not disruptive.

In Figure 11, however, we examine performance for the
case of additional jammers. At time τ0 there are 25 noise
jammers at the same locations and power levels as shown
in Figure 2. At time τ1 we process data that reflects the
addition of 0, 1, 2, or 3 jammers. The additional jammers have
the same characteristics as the original 25 jammers. That is,
they are randomly determined with the restrictions that they
lie outside the main beam and have jammer-to-noise ratios
between 20 and 50 dB. The initialization at time τ1 is again
with w

(0)
a (τ1) = w

(rbest)
a (τ0). We see in Figure 11 that the

addition of jammers can have mixed results. Typically, as one
would expect, that the performance suffers appreciably due to
the introduction of an undernulled interference sources. We see
that this is the case with either 2 or 3 new jammers. However,
we also see that the case of a single additional jammer had
very little negative impact. This is due to a fortuitous random
draw of the jammer location/power. We also note that when
performance suffers the filter then takes a full 25-28 stages
to converge again to its best performance. Thus an entirely
new subspace is needed to achieve best performance even
though only 2 to 3 new jammers are present. This is no more
burdensome, however, then if trivial initialization had been
used.
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IV. COMBINING LINEAR CONSTRAINTS WITH CG-MWF
In this paper we describe two different means of augmenting

the MWF to take advantage of pre-existing environmental
knowledge — LC-MWF and CG-MWF. These two approaches
can be combined, of course, to simultaneously implement
both Knowledge-Aided and Recursive MWF. For example, a
priori knowledge can be inserted using linear constraints and
recursion can be implemented using CG-MWF. We refer to
this as LC-CG-MWF and demonstrate the results in Figure 12
for the baseline scenario under consideration with 10 known
interferers. We see that the 10 linear constraints reduce the
adaption requirements from 25 to 15 as before. Additionally,
upon recursion the performance quickly converges to best
MSE. The results in Figure 12 are for perfect knowledge and
stationary data. Performance degradations due to imperfections
and nonstationarities are not shown but can be inferred from
the previous results.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Rank

M
ea

n 
S

qu
ar

e 
E

rr
or

 (d
B

)

Baseline Multistage Wiener Filter
LC−MWF, 10 Directional Constraints
LC−CG−MWF, 1st Recursion
LC−CG−MWF, 2nd Recursion
LC−CG−MWF, 10th Recursion
Minimum Mean Square Error

Fig. 12. Combined Knowledge-Aided and Recursive LC-CG-MWF: Perfect
Knowledge and Stationary Data.

V. SUMMARY

In this paper we described two methods for augmenting
the multistage Wiener filter in order to exploit a priori
knowledge or take advantage of previously computed adaptive
solutions. The first approach was based on existing linear
constraint techniques. The second approach used the recently
reported CG-MWF implementation of the MWF which affords
the opportunity for nonzero weight vector initialization. This
nonzero initialization is used to insert either a priori jammer
knowledge or the weight vector solution from a previous block
of data.

We evaluated the above techniques for an adaptive beam-
forming application. We found that these techniques worked
very well for cases with accurate a priori knowledge and
stationary data. We also evaluated the approaches under im-
perfect and nonstationary conditions in order to determine
the breakpoints where the techniques were no longer pro-
ductive. For the cases tested we found that prior knowledge

of jammer directions needed to be known to a one-sigma
accuracy of about 1/20th of a half-power beamwidth. Similarly
prior knowledge of jammer power levels needed to be known
to between 10 and 15 dB, one-sigma. For the recursive
implementation we found that performance was sensitive to
the introduction of new interference sources, and that when
this occurred full adaptation to a new subspace was needed.
When this occurred, however, the processor simply required
the same adaptive rank as it would have required with zero
vector initialization. Thus the algorithms were self-correcting.
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