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GMTI Scenario

GMTI/STAP CHALLENGES
• Heterogeneous Clutter
• Spiky Clutter
• Dense Target Backgrounds
• Low Doppler Targets

MIT Lincoln Laboratory

KASSPER PROGRAM GOAL
Exploit a priori knowledge to address GMTI/STAP challenges in 
next generation ISR platforms
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KASSPER Processing Architecture

Focus of talk will explore several front-end signal processing techniques
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GMTI Scenario Example
Tuxedo Sensor
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Doppler
Filter

Pulse
Compression

Adaptive
Beamform

STAP

CFAR
Detection

BASELINE GMTI
PROCESSING STREAM

Example GMTI Output 
with Tuxedo Data

• Implemented baseline GMTI processing stream
• Detections after CFAR normalization

Radial Velocity [m/sec]

R
an

ge
 [k

m
]

-10 -5 50 10
21.5

22.0

22.5

23.0

T = 2-ton Truck
F = Fuel Truck
H = HMMWV

× = Target Detection



MIT Lincoln Laboratory
KASSPER03-6
NBP 5/1/2003

• Develop signal processing architecture and algorithms that 
exploit a priori knowledge to overcome ISR challenges and 
improve performance 
– Moving Target Focusing
– Multi-channel adaptive SAR
– Power Variable Training
– Extended Array Receiver

• Develop new High Performance Embedded 
Computing (HPEC) architecture for real-time
Intelligence, Surveillance, and Reconnaissance 
(ISR) applications

• Real-time flight demonstrations 

Lincoln Laboratory Goals 
in the KASSPER Program
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SAR versus STAP Processing*

• STAP adaptively nulls clutter and 
jammers to achieve noise-limited 
detection
– Fast target revisit, high area search rate
– Long aperture for low MDV

• High-resolution SAR employs long CPIs 
and high bandwidth to enhance target 
gain and reduce clutter strength
– Clutter-limited detection
– Slow target revisit, low area search rate

STAP

SAR

Aperture

Bandwidth

CPI • Aperture size, CPI length and bandwidth 
may be selected to optimize MDV 
performance

• Adaptive array processing over long 
CPIs and large bandwidth needs to 
address
– Spatial clutter heterogeneity
– Clutter training sample support
– Target migration*Slide coutesy of Jen Jao
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Outline

• Introduction

• New Concepts for GMTI Performance Improvements

– Moving Target Focusing

– Power Variable Training

– Multi channel Adaptive SAR

– Extended Array Receiver

• Summary
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EXPLORED
HERE

Defocus of Moving Targets 
with Cross-Range Motion

SLANT RANGE
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SIMULATED SAR IMAGE FOCUSED 
FOR STATIONARY TARGETS

• Targets moving in slant-range dimension will appear 
displaced in cross-range relative to stationary clutter

• Targets moving in cross-range dimension will appear 
smeared in doppler or cross-range

MOVING TARGETS
WITH CROSS-RANGE

MOTION

STATIONARY
CLUTTER
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Mechanism for Moving Target 
Smearing
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Focusing improves
SNR here

Assuming broadside 
look angle, GTMI 

detects here

Defocusing Factor

vS

Defocusing Factor
Norm of the relative 

velocity vector

Realistic Ground
Target Velocities

Aircraft Velocity

Slant-Range
Velocity

vX

Cross-Range
Velocity

( ) 22
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Focus of moving targets is parameterized with a single scalar quantityFocus of moving targets is parameterized with a single scalar quantity

Contours of constant
focus 
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Limits on CPI Time 
to Prevent Doppler-walk

vx
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0

-25

• Center Frequency  10 GHz

• Platform  Velocity  200 m/sec 

• Target at broadside
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Moving Target Doppler Spread
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GMTI Focusing
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Correcting for target 
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applying a quadratic 
phase term to each pulse

Moving Target Defocuses with:

• Increasing CPI time

• Increasing γ

• Decreasing range
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• 10 GHz Center Frequency

• Platform Velocity 200 m/sec 

• 0.5 second integration time

• 60 km slant range

Avγ=γ

A bank of focusing filters (for different values of γ) is required.
Analogous to Doppler filterbank architecture

A bank of focusing filters (for different values of γ) is required.
Analogous to Doppler filterbank architecture

SNR Loss without focusing, 
assume usual FFT Doppler 

processing ( set γ = 0 )
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Sensitivity to γ
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• 10 GHz Center Frequency

• Platform Velocity 200 m/sec 

• 1.0 second integration time

• 60 km slant range
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Sensitivity to Range
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Moving Target focusing for Targets 
with Transverse Motion

SLANT RANGE
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SIMULATED SAR IMAGE FOCUSED 
FOR STATIONARY TARGETS

SLANT RANGE

• Targets moving in cross range will appear smeared in a traditional SAR image 
and will “cohere-up” in a SAR image focused for moving targets

• If cross range motion is significant over integration time then comparing the 
two SAR images can separate moving targets from clutter (stationary targets)

STATIONARY
CLUTTER

TARGETS MOVING
IN CROSS-RANGE

SIMULATED SAR IMAGE FOCUSED 
FOR MOVING TARGETS

REFERENCE J. Jao, “Theory of synthetic aperture radar imaging of a moving target,” IEEE Trans. on Geoscience and Remote Sensing, 2001.
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Outline

• Introduction

• New Concepts for GMTI Performance Improvements

– Moving Target Focusing

– Power Variable Training

– Multi channel Adaptive SAR

– Extended Array Receiver

• Summary
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Power-Variable Training
(Without Overnulling)

• Power scaling provides lower MDV than power selective training
• Power scaling may generate more false alarms relative to power selective 

training but adaptive sidelobe blanking should remove most of them
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Power Variable Training Procedure
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Example with Tuxedo Data

Doppler
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Compression

Adaptive
Beamform
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Power Variable Training SIGNIFICANTLY improves false alarm
performance relative to baseline STAP approach 

Power Variable Training SIGNIFICANTLY improves false alarm
performance relative to baseline STAP approach 
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Overnulling / Undernulling
Performance

Matched  
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Matching CNR avoids unnecessary SINR Losses due to 
overnulling or undernulling

Matching CNR avoids unnecessary SINR Losses due to 
overnulling or undernulling
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Outline

• Introduction

• New Concepts for GMTI Performance Improvements

– Moving Target Focusing

– Power Variable Training

– Multi channel Adaptive SAR

– Extended Array Receiver

• Summary
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Multi-Channel Adaptive SAR

CROSS RANGE
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SAR image from 
element 2

SAR image from 
antenna N

SAR image from 
antenna 1

Antenna 1

Antenna 2

Antenna N

REFERENCE A. Yegulalp, FOPEN GMTI Using Multi-Channel Adaptive SAR, Proceedings of the ASAP Workshop, March 2002.

Test cells, x
Training cells 
to estimate R

TxxH >−1R̂
Compute change detection 
statistic using adjacent cross 
range and slant range pixels

PROCESSING APPROACH
• Form SAR image for each sensor
• Compute estimated covariance
• Change detection
• Prune potential target data
• Recompute estimated covariance
• Change detection
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Open Issues with Multi-Channel 
Adaptive SAR Processing

• For well calibrated arrays the adaptive matched filter (AMF) 
approach outperforms the change detection (CD) approach

• For what amount of array uncertainty does the change 
detection approach become more useful?

• Do we need to generate focused SAR images for each 
antenna element or will simple Doppler processing suffice?
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Outline

• Introduction

• New Concepts for GMTI Performance Improvements

– Moving Target Focusing

– Power Variable Training

– Multi channel Adaptive SAR

– Extended Array Receiver

• Summary
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Extended Array Receiver

T1 ⊥ T2 ⊥ T3

ReceiveTransmit • Transmit orthogonal waveforms on 
each subarray

• Receive and demodulate each 
waveform across the entire array

• This approach transfers the 
available transmit gain of the full 
aperture to the receiver, providing 
flexibility

• Note, some antenna systems spoil 
the gain on transmit for wider 
coverage  

T3

T1

L

R1 , R2 , R3

Provides narrow transmit-receive beampatterns 
over wide coverage area 

Provides narrow transmit-receive beampatterns 
over wide coverage area 

T2

SYSTEM CONCEPT
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Theoretical Transmit-Receive
Beampatterns
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Theoretical Transmit-Receive
Beampatterns

Sub-Aperture on Transmit with 
orthogonal waveforms

Extended Aperture on Receive
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Open Issues with Extended Array 
Receiver Concept

• Elevated receiver noise floor with multiple orthogonal 
waveforms

• Can a processor architecture support multiple orthogonal 
waveform  decoding per subarray?

• How nearly orthogonal can multiple waveforms be over 
both delay and doppler?

• In some cases internal clutter motion may limit the benefit 
of an extended array receiver

• Need to investigate synchronization of orthogonal 
waveforms on reception
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Summary of GMTI Performance 
Improvements
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Summary

• GMTI is challenging in real-world applications
– Excessive false alarms
– Missed Detections (slow moving vehicles)
– Dense target scenarios
– Heterogeneous clutter environments

• Explored several approaches to improve GMTI performance
– Moving target focusing for long CPIs
– Excision of training data far from clutter ridge
– Power variable training without overnulling
– Multi-channel adaptive SAR
– Extended array receiver

• Developing system-oriented approaches to exploit a priori 
knowledge with respect to front-end and back-end signal 
processing and scheduling

• Implementation on real-time testbed will be evaluated
• Ongoing evaluation with simulated and recorded radar data




