
KASSPER Testbed-1
MIT/LL 4/24/2003

MIT Lincoln Laboratory

KASSPER
Real-Time Embedded Signal

Processor Testbed
Glenn Schrader

Andrew Heckerling
Michael Harrison

Massachusetts Institute of Technology
Lincoln Laboratory

14-16 April 2003
This work is sponsored by the Defense Advanced Research Projects Agency, under Air Force Contract F19628-00-C-0002. Opinions,
interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory
KASSPER Testbed-2

MIT/LL 4/24/2003

Outline

• KASSPER Testbed

– Overview

– Baseline Algorithms

– High Level Processor Scheduling

– Processor Requirements

– Application Architecture

– Processor Environment

• Parallel Vector Library

• Summary

MIT Lincoln Laboratory
KASSPER Testbed-3

MIT/LL 4/24/2003

Lincoln Laboratory
Real-time Testbed Development

FY ’02:
Implemented

Baseline GMTI
Processing Chain,

Procured Processor,
Ported the Parallel

Vector Library (PVL)

• Baseline SAR processing
• Multi-mode operation
• High speed input data

FY ’03: Explore Architecture and
Algorithm Concepts

REAL-TIME PROCESSING
CHALLENGES

• Look-ahead scheduling
• Appropriate use of new concepts

with available processing resources
• Intelligent caching of knowledge

databases

MIT Lincoln Laboratory
KASSPER Testbed-4

MIT/LL 4/24/2003

SAR Algorithm

SAR Functional Pipeline

GMTI Algorithm

GMTI Functional Pipeline

SAR Data FlowGMTI Data Flow

Filtering
Task

Filtering
Task

Beamformer
Task

Filtering
Task

(PC & DF)

Detection
Task

(STAP &
CFAR)

Scheduler
Task

RADAR Control + Timing
Platform State Information

Data
Output
Task

Target
Detections
Sorted by
Range & Doppler

Raw
Input
Data

Data
Input
Task

SAR
Image(s)

Motion
Compensation,

Pulse
Compression

Polar
Resampling

2D FFT
Data
Input
Task

Scheduler
Task

RADAR Control + Timing
Platform State Information

Raw
Input
Data

Data
Output
Task

Corner Turn Corner Turn Corner Turn
Corner TurnCorner Turn

Baseline Processing Algorithms

• Well understood algorithms
• Provides a starting point for exploring

processing concepts
• Variants which include a-priori knowledge can

be included as algorithms are defined

STAP

SAR

Aperture

Band-
width

CPI

MIT Lincoln Laboratory
KASSPER Testbed-5

MIT/LL 4/24/2003

High Level Processor Scheduling

• Based on the mission flight
path and information
gathering goals, predictively
schedule the time, look angle
and range extent to process
for future dwells based on the
predicted platform location
and optimum viewing
directions.

• If a dwell needs additional a-
priori knowledge then
schedule dwells to probe the
environment (I.e. SAR, etc) to
update the knowledge
database.

• Schedule pre-loading for the
a-priori data needed by each
dwell prior the the dwell’s
start time.Schedule dwells to obtain the maximum

information from the environment using the
fewest system resources.

MIT Lincoln Laboratory
KASSPER Testbed-6

MIT/LL 4/24/2003

Processor Architecture Requirements

• Allow incorporation of a-priori (I.e. stored) knowledge into
the processing chain

– Allow stored knowledge to be updated in real-time
– Conceptually allow stored knowledge to be anything. I.e. raw

receiver data (I/Q input data), intermediate processing results
(covariance), complete processing results (detection lists,
SAR images), downstream processing results (tracker
output), knowledge collected offline (DTED, road location,
terrain boundaries, etc).

• Support real-time switching between multiple radar
modes/algorithms (I.e. CPI length, a-priori knowledge use,
range extent to process, etc).

MIT Lincoln Laboratory
KASSPER Testbed-7

MIT/LL 4/24/2003

Preliminary Knowledge Database
Architecture

Scheduler

Signal
Processing

Signal
Processing
ResultsReceiver

Data

Dwell Schedule, INS, etc

Downstream
Processing

(Tracker, etc)

Processing
Command

• Storing knowledge is a database problem
rather than a computational problem.

• The data must be indexed using a suitable
key or keys

Load/
Store/
Send

Knowledge
Index

Knowledge
Cache Pre-processing

Knowledge
Store

New Knowledge

Load Store

Stored Data

Send

Lookup

Update

New Knowledge

Stored Data

MIT Lincoln Laboratory
KASSPER Testbed-8

MIT/LL 4/24/2003

GMTI-<n>

GMTI-2

SAR- <n>

SAR-2

Multi-Mode Application Architecture

Filtering
Task

Filtering
Task

Beamformer
Task

Filtering
Task

(PC & DF)

Detection
Task

(STAP &
CFAR)

Data
Output
Task

Input
Data

Data
Input
Task

Motion
Compensation

Pulse
Compression

Polar
Resampling,

2D FFT

SAR-1

GMTI-1

Scheduler
Task

RADAR Control + Timing
Platform State Information

Signal
Processing
Results

MIT Lincoln Laboratory
KASSPER Testbed-9

MIT/LL 4/24/2003

Integrated Airborne Processor
Environment

Transmitter
Receiver &

A/D Converters
DIQ

Radar Timing & Control

TX Antenna RX Antenna

Timing&
Control

Timing&
Control

Timing&
Control

Timing&
Control

Raw A/D
Data

Raw DIQ
Data

Aircraft SystemsINS, GPS, Air Data, etc

Operating Mode

‘‘Knowledge Database’’

Goal is to develop a processor which could be integrated into an airborne platform.

Results

“Knowledge”
Data

MIT Lincoln Laboratory
KASSPER Testbed-10

MIT/LL 4/24/2003

Laboratory Testbed Processor
Environment

Test Selection

Stored DIQ data,
INS data,
GPS data,
Air data, etc

Bulk Data
Storage

KASSPER
Processor

“Knowledge”
Storage

“Knowledge”
Data

Surrogate for actual radar system

Results

MIT Lincoln Laboratory
KASSPER Testbed-11

MIT/LL 4/24/2003

Laboratory Testbed Processor
Environment

Test Selection

Stored DIQ data,
INS data,
GPS data,
Air data, etc

Bulk Data
Storage

Real-time
Data Source
System

KASSPER
Processor

“Knowledge”
Storage

“Knowledge”
Data

Surrogate for actual radar system

Raw DIQ
Data

Timing& Control,
INS, GPS,
Air data, etc

Results

MIT Lincoln Laboratory
KASSPER Testbed-12

MIT/LL 4/24/2003

Algorithm Implementation Process

Algorithm
Design

Algorithm
Verification

Software
Design

Software
Implementation

CDRMatlab
Code

Matlab
Verification

Application
Code

Standard
Dataset

Reference
Results

Application
ResultsMatch?

FEEDBACK

Algorithm
Spec

PDR

MIT Lincoln Laboratory
KASSPER Testbed-13

MIT/LL 4/24/2003

Outline

• KASSPER Testbed

• Parallel Vector Library (PVL)

– Introduction

– Basic PVL Concepts

– Application Structure

– Abstraction with Performance

– Future Directions

• Summary

MIT Lincoln Laboratory
KASSPER Testbed-14

MIT/LL 4/24/2003

The Motivation For PVL

• Developing high performance parallel signal
processing software is difficult.

• Making parallel software portable and scalable
adds additional complexity.

• Rapid Prototyping is more difficult when
developing directly on a real-time processor.

MIT Lincoln Laboratory
KASSPER Testbed-15

MIT/LL 4/24/2003

Algorithm Software Development:
Basic System

Input
Task

Analysis Task
XOUT = IFFT(w*FFT(X IN)))

Files

XIN
XIN

WW

XIN
XIN

WW

FFTFFT

IFFTIFFT XOUT
XOUT

Input
Conduit

Output
Conduit

Output
Task

Files

XOUT
XOUT*

• Can build real pipelined systems with PVL
tasks and conduits (comm)

• Can build real pipelined systems with PVL
tasks and conduits (comm)

MIT Lincoln Laboratory
KASSPER Testbed-16

MIT/LL 4/24/2003

Input
Task

XIN

w

Analysis Task
XOUT = IFFT(w*FFT(X IN)))

Algorithm Software Development:
PVL Map/Grid Concept

Parallel Processor

w

XIN FFT

IFFT

XOUT

Output
Task

XOUT

• Vectors, Matrices, Computations, and Tasks can
be mapped to different grids of processors

• Vectors, Matrices, Computations, and Tasks can
be mapped to different grids of processors

MIT Lincoln Laboratory
KASSPER Testbed-17

MIT/LL 4/24/2003

• Algorithm and hardware mapping are linked
• Resulting code is non-scalable and non-portable

• Algorithm and hardware mapping are linked
• Resulting code is non-scalable and non-portable

Current Non-PVL Approach to Parallel
Code Development and Mapping

Algorithm + Mapping Code

Proc
1

Proc
1

Proc
2

Proc
2

Stage 1

Proc
3

Proc
3

Proc
4

Proc
4

Stage 2
while(!done)
{
if (procNum()==1 || procNum()==2)

stage1 ();
else if (procNum()==3 || procNum()==4)

stage2();
}

while(!done)
{

if (procNum()==1 || procNum()==2)
stage1();

else if (procNum()==3 || procNum()==4) ||
procNum()==5 || procNum==6)

stage2();
}

Proc
5

Proc
5

Proc
6

Proc
6

MIT Lincoln Laboratory
KASSPER Testbed-18

MIT/LL 4/24/2003

Key Insights Into
Parallel Software Development

• Algorithm Implementation and Mapping to the Processor
should be as orthogonal as possible.

• Computation and communication should be seamless from
the application’s point of view.

• ~90% of the work comes from ~10% of the code so make
the 90% that isn’t performance critical as easy to develop
as possible.

• Allow access to the underlying data so that application
specific processing functions can still be implemented.

• Rapid prototyping is easier if application code is portable
between the workstation and real-time environments.

MIT Lincoln Laboratory
KASSPER Testbed-19

MIT/LL 4/24/2003

PVL Application Code Development

“Application Developer”

• Converts algorithm into code

while(!done)
{

task1();
task2();

}

• Writes code once

• Easier to code, because only
concerned with mathematics,
not distribution

“Mapper”

• Maps code to hardware

• Creates new mappings when code
is scaled or ported

Task 1 Task 2

Proc 0

Proc 1

Proc 2

Proc 3

Separate the job of writing a parallel application from the job of assigning
hardware to that application
Separate the job of writing a parallel application from the job of assigning
hardware to that application

Creating ‘good’ mappings requires expert developers and is not automated.

MIT Lincoln Laboratory
KASSPER Testbed-20

MIT/LL 4/24/2003

Application code example

Single Processor Mapping

Multi Processor Mapping

A = B + C
#include <Vector.h>
#include <AddPvl.h>

void addVectors(aMap, bMap, cMap) {
Vector< Complex<Float> > a(‘a’, aMap, LENGTH);
Vector< Complex<Float> > b(‘b’, bMap, LENGTH);
Vector< Complex<Float> > c(‘c’, cMap, LENGTH);

a = 0; b = 1; c = 2;

a=b+c;

}

A = B + C

• Single processor and multi-processor code are the same
• Maps can be changed without changing software
• High level code is compact

• Single processor and multi-processor code are the same
• Maps can be changed without changing software
• High level code is compact

MIT Lincoln Laboratory
KASSPER Testbed-21

MIT/LL 4/24/2003

Parallel Vector Library (PVL)

ApplicationApplication ApplicationApplication ApplicationApplication
Parallel Vector Library (PVL)Parallel Vector Library (PVL)

ApplicationApplication

KernelKernel

LibraryLibrary

Machine
independence

Optimized
parallel library

Machine
dependence

Portability

Measured PVL Portability
for STANDARD Missile Application

99%

97%

74%KernelKernel KernelKernel KernelKernel

Workstation
simulation

Real-time cluster
Real-time

embedded
processorWorkstation through

“roll on, roll off”
rapid prototyping

MIT Lincoln Laboratory
KASSPER Testbed-22

MIT/LL 4/24/2003

PVL Layered Architecture

Map

Vector/MatrixVector/Matrix CompComp
Task

Conduit

Grid

Distribution

Math Kernel (VSIPL) Messaging Kernel (MPI)

Application

Parallel
Vector
Library

Hardware

Input Analysis Output

User
Interface

Hardware
Interface

Workstation
Embedded

Multi-computer
PowerPC

Cluster
Embedded

Board

Intel
Cluster

Productivity

Portability

Performance

• Layers enable simple interfaces between the
application, the library, and the hardware

• Layers enable simple interfaces between the
application, the library, and the hardware

MIT Lincoln Laboratory
KASSPER Testbed-23

MIT/LL 4/24/2003

Extension of PVL into Heterogeneous
Processor Hardware Architecture

Workstation
Simulation

Real-Time
Cluster

Real-Time
Embedded
Processor

Parallel Vector Library
(Cross-platform machine independent software)

Parallel Vector Library
(Cross-platform machine independent software)

FPGAs and ASIC chips:
Treated as computational
objects by software
architecture

Mission Specific
Processing

Hardware
Object Library

Enables use of the appropriate hardware for each algorithm with simplified programming

Front-End
Processing

Adaptive
Processing

Back-End
Processing

ASIC, FPGA

FPGA,µP

µP

Future Radar Signal Processing Architecture

MIT Lincoln Laboratory
KASSPER Testbed-24

MIT/LL 4/24/2003

Parallel Matlab

Matlab
Application

Parallel
Matlab

Toolbox Messaging KernelMessaging Kernel

Parallel
Hardware

Input Analysis Output

User
Interface

Hardware
Interface

MatlabMPI other

Vector/MatrixVector/Matrix CompComp
Task

Conduit

• DoD has a clear need to rapidly
develop, test and deploy new
techniques for analyzing sensor
data

– Most DoD algorithm
development and simulations
are done in Matlab

– High performance has
traditionally been available only
in other languages

– Transformation involves
extensive software development
and testing

• Parallel Matlab eliminates
transformation by providing

– High performance (parallel
processing)

– High productivity (10x fewer
lines of code than C)

– High portability (Matlab available
on many platforms)

• Preserve existing Matlab interface
• Hide all parallel communication
• Allow transparent switching between

single and multi processor cases

http://www.ll.mit.edu/MatlabMPI

• Preserve existing Matlab interface
• Hide all parallel communication
• Allow transparent switching between

single and multi processor cases

http://www.ll.mit.edu/MatlabMPI

MIT Lincoln Laboratory
KASSPER Testbed-25

MIT/LL 4/24/2003

Outline

• KASSPER Testbed

• Parallel Vector Library

• Summary

MIT Lincoln Laboratory
KASSPER Testbed-26

MIT/LL 4/24/2003

KASSPER Team Processor Testbed
Algorithm Insertion Process

FEEDBACK

Algorithm
Design

Algorithm
Verification

Software
Design

Software
Implementation

CDRMatlab
Code

Matlab
Verification

Application
Code

Standard
Dataset

Reference
Results

Application
ResultsMatch?

Algorithm
Spec

PDR

Lincoln Laboratory TasksAlgorithm Developer Tasks

MIT Lincoln Laboratory
KASSPER Testbed-27

MIT/LL 4/24/2003

Summary

• Developing a processor architecture to support KASSPER
– Predictive Scheduling
– Knowledge Database
– Intelligent Caching

• Preliminary hardware and software architectures have been
defined to develop and test processor concepts

• GMTI baseline application running on the parallel processor
• PVL Port to the Mercury processor is complete
• Near-term activities

– Simplified test cases for investigating architecture concepts
– GMTI Performance optimization
– Baseline SAR implementation
– Multi-mode operation
– High speed input data storage
– Processor expansion

