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– Processor Requirements
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Lincoln Laboratory
Real-time Testbed Development

FY ’02:
Implemented 

Baseline GMTI
Processing Chain, 

Procured Processor, 
Ported the Parallel 

Vector Library (PVL)

• Baseline SAR processing
• Multi-mode operation
• High speed input data

FY ’03: Explore Architecture and 
Algorithm Concepts

REAL-TIME PROCESSING 
CHALLENGES

• Look-ahead scheduling
• Appropriate use of new concepts 

with available processing resources 
• Intelligent caching of knowledge 

databases
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Baseline Processing Algorithms

• Well understood algorithms
• Provides a starting point for exploring 

processing concepts
• Variants which include a-priori knowledge can 

be included as algorithms are defined
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High Level Processor Scheduling

• Based on the mission flight 
path and information 
gathering goals, predictively 
schedule the time, look angle 
and range extent to process 
for future dwells based on the 
predicted platform location 
and optimum viewing 
directions.

• If a dwell needs additional a-
priori knowledge then 
schedule dwells to probe the 
environment (I.e. SAR, etc) to 
update the knowledge 
database.

• Schedule pre-loading for the 
a-priori data needed by each 
dwell prior the the dwell’s 
start time.Schedule dwells to obtain the maximum 

information from the environment using the 
fewest system resources.
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Processor Architecture Requirements

• Allow incorporation of a-priori (I.e. stored) knowledge into 
the processing chain

– Allow stored knowledge to be updated in real-time
– Conceptually allow stored knowledge to be anything. I.e. raw 

receiver data (I/Q input data), intermediate processing results 
(covariance), complete processing results (detection lists, 
SAR images), downstream processing results (tracker 
output), knowledge collected offline (DTED, road location, 
terrain boundaries, etc).

• Support real-time switching between multiple radar 
modes/algorithms (I.e. CPI length, a-priori knowledge use, 
range extent to process, etc).
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Preliminary Knowledge Database 
Architecture
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Processing
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Processing
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• Storing knowledge is a database problem 
rather than a computational problem.

• The data must be indexed using a suitable 
key or keys
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Multi-Mode Application Architecture
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Integrated Airborne Processor 
Environment

Transmitter
Receiver &

A/D Converters
DIQ

Radar Timing & Control
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Timing&
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Timing&
Control

Timing&
Control

Timing&
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Aircraft SystemsINS, GPS, Air Data, etc

Operating Mode

‘‘Knowledge Database’’

Goal is to develop a processor which could be integrated into an airborne platform.

Results

“Knowledge”
Data
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Laboratory Testbed Processor 
Environment

Test Selection

Stored DIQ data,
INS data, 
GPS data,
Air data, etc

Bulk Data
Storage

KASSPER
Processor

“Knowledge”
Storage

“Knowledge”
Data

Surrogate for actual radar system

Results
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Algorithm Implementation Process
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Outline

• KASSPER Testbed

• Parallel Vector Library (PVL)

– Introduction

– Basic PVL Concepts

– Application Structure

– Abstraction with Performance

– Future Directions

• Summary
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The Motivation For PVL

• Developing high performance parallel signal 
processing software is difficult.

• Making parallel software portable and scalable  
adds additional complexity.

• Rapid Prototyping is more difficult when 
developing directly on a real-time processor.
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Algorithm Software Development:
Basic System

Input
Task

Analysis Task
XOUT = IFFT( w*FFT(X IN)) )

Files

XIN
XIN

WW

XIN
XIN

WW

FFTFFT

IFFTIFFT XOUT
XOUT

Input
Conduit

Output
Conduit

Output
Task

Files

XOUT
XOUT*

• Can build real pipelined systems with PVL 
tasks and conduits (comm)

• Can build real pipelined systems with PVL 
tasks and conduits (comm)
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Input
Task

XIN

w

Analysis Task
XOUT = IFFT( w*FFT(X IN)) )

Algorithm Software Development:
PVL Map/Grid Concept

Parallel Processor

w

XIN FFT

IFFT

XOUT

Output
Task

XOUT

• Vectors, Matrices, Computations, and Tasks can 
be mapped to different grids of processors

• Vectors, Matrices, Computations, and Tasks can 
be mapped to different grids of processors
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• Algorithm and hardware mapping are linked
• Resulting code is non-scalable and non-portable

• Algorithm and hardware mapping are linked
• Resulting code is non-scalable and non-portable

Current Non-PVL Approach to Parallel 
Code Development and Mapping

Algorithm + Mapping Code

Proc
1

Proc
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Proc
2

Proc
2

Stage 1

Proc
3

Proc
3

Proc
4

Proc
4

Stage 2
while(!done)
{
if ( procNum()==1 || procNum()==2 )

stage1 ();
else if ( procNum()==3 || procNum()==4 )

stage2();
}

while(!done)
{

if ( procNum()==1 || procNum()==2 )
stage1();

else if ( procNum()==3 || procNum()==4) ||
procNum()==5 || procNum==6 )

stage2();
}

Proc
5

Proc
5

Proc
6

Proc
6
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Key Insights Into 
Parallel Software Development

• Algorithm Implementation and Mapping to the Processor 
should be as orthogonal as possible.

• Computation and communication should be seamless from 
the application’s point of view.

• ~90% of the work comes from ~10% of the code so make 
the 90% that isn’t performance critical as easy to develop 
as possible. 

• Allow access to the underlying data so that application 
specific processing functions can still be implemented.

• Rapid prototyping is easier if application code is portable 
between the workstation and real-time environments.
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PVL Application Code Development 

“Application Developer”

• Converts algorithm into code

while( !done )
{

task1();
task2();

}

• Writes code once

• Easier to code, because only 
concerned with mathematics, 
not distribution

“Mapper”

• Maps code to hardware

• Creates new mappings when code 
is scaled or ported

Task 1 Task 2

Proc 0

Proc 1

Proc 2

Proc 3

Separate the job of writing a parallel application from the job of assigning 
hardware to that application
Separate the job of writing a parallel application from the job of assigning 
hardware to that application

Creating ‘good’ mappings requires expert developers and is not automated.
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Application code example

Single Processor Mapping

Multi Processor Mapping

A  = B  + C
#include <Vector.h>
#include <AddPvl.h>

void addVectors(aMap, bMap, cMap) {
Vector< Complex<Float> > a(‘a’, aMap, LENGTH);
Vector< Complex<Float> > b(‘b’, bMap, LENGTH);
Vector< Complex<Float> > c(‘c’, cMap, LENGTH);

a = 0;  b = 1;  c = 2;

a=b+c;

}

A  = B  + C

• Single processor and multi-processor code are the same
• Maps can be changed without changing software
• High level code is compact

• Single processor and multi-processor code are the same
• Maps can be changed without changing software
• High level code is compact
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Parallel Vector Library (PVL)

ApplicationApplication ApplicationApplication ApplicationApplication
Parallel Vector Library (PVL)Parallel Vector Library (PVL)

ApplicationApplication

KernelKernel

LibraryLibrary

Machine 
independence

Optimized 
parallel library

Machine 
dependence

Portability

Measured PVL Portability
for STANDARD Missile Application

99%

97%

74%KernelKernel KernelKernel KernelKernel

Workstation 
simulation

Real-time cluster
Real-time 

embedded 
processorWorkstation through 

“roll on, roll off” 
rapid prototyping
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PVL Layered Architecture

Map
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• Layers enable simple interfaces between the 
application, the library, and the hardware

• Layers enable simple interfaces between the 
application, the library, and the hardware



MIT Lincoln Laboratory
KASSPER Testbed-23

MIT/LL 4/24/2003

Extension of PVL into Heterogeneous 
Processor Hardware Architecture 

Workstation
Simulation

Real-Time 
Cluster

Real-Time
Embedded
Processor

Parallel Vector Library
(Cross-platform machine independent software)

Parallel Vector Library
(Cross-platform machine independent software)

FPGAs and ASIC chips:
Treated as computational 
objects by software
architecture

Mission Specific
Processing

Hardware
Object Library

Enables use of the appropriate hardware for each algorithm with simplified programming 

Front-End
Processing

Adaptive
Processing

Back-End
Processing

ASIC, FPGA

FPGA,µP

µP

Future Radar Signal Processing Architecture
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Parallel Matlab

Matlab
Application

Parallel
Matlab

Toolbox Messaging KernelMessaging Kernel

Parallel
Hardware

Input Analysis Output

User
Interface

Hardware
Interface

MatlabMPI other

Vector/MatrixVector/Matrix CompComp
Task

Conduit

• DoD has a clear need to rapidly 
develop, test and deploy new 
techniques for analyzing sensor 
data

– Most DoD algorithm 
development and simulations 
are done in Matlab

– High performance has 
traditionally been available only 
in other languages

– Transformation involves 
extensive software development 
and testing

• Parallel Matlab eliminates 
transformation by providing

– High performance (parallel 
processing)

– High productivity (10x fewer 
lines of code than C)

– High portability (Matlab available 
on many platforms)

• Preserve existing Matlab interface
• Hide all parallel communication
• Allow transparent switching between 

single and multi processor cases

http://www.ll.mit.edu/MatlabMPI

• Preserve existing Matlab interface
• Hide all parallel communication
• Allow transparent switching between 

single and multi processor cases

http://www.ll.mit.edu/MatlabMPI
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Outline

• KASSPER Testbed

• Parallel Vector Library

• Summary
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KASSPER Team Processor Testbed
Algorithm Insertion Process

FEEDBACK

Algorithm
Design

Algorithm
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Software
Design

Software
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CDRMatlab
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Matlab
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Results

Application
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Algorithm
Spec

PDR

Lincoln Laboratory TasksAlgorithm Developer Tasks
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Summary

• Developing a processor architecture to support KASSPER
– Predictive Scheduling
– Knowledge Database
– Intelligent Caching

• Preliminary hardware and software architectures have been 
defined to develop and test processor concepts

• GMTI baseline application running on the parallel processor
• PVL Port to the Mercury processor is complete
• Near-term activities

– Simplified test cases for investigating architecture concepts
– GMTI Performance optimization
– Baseline SAR implementation
– Multi-mode operation
– High speed input data storage
– Processor expansion


