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Background

Real-world radar clutter environments depend on site-specific
factors including:

— Terrain
— Ground cover type

Site-specific clutter modeling is fundamental to understanding
STAP performance in real-world settings

This has led to the development of site-specific performance
bound techniques

— Thermal noise limited performance is optimistic for systems operating in
real-world environments

— Theory is based on ideal site-specific clutter covariance modeling

It is logical that the models used in site-specific performance
analyses could also be used when processing the radar data to
potentially improve radar performance

For many systems it is not possible to use full-DoF STAP due to
limited computational resources and limited sample support
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Site-specific Clutter Modeling

bald earth site-specific (SCATS/DTED)
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range bin
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Knowledge-Aided Signal Processing

The a priori knowledge will typically be used in two ways
— Indirect: exploit knowledge sources to segment training data, etc.

— Direct: exploit knowledge sources to place nulls in the beamformer
pattern

This presentation develops a methodology for using a priori
knowledge directly in the reduced-DoF space-time
beamforming solution

Clutter cancellation based on a priori knowledge alone will
typically not result in adequate performance

Focus will be on techniques that combine or “blend”
adaptive and deterministic filtering

The performance of these filtering techniques will be a
function of how well the system is calibrated

IS1
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Interference Modeling

Assume the clutter signal plus thermal noise model

X=X ot+n o - Hadama_lrd product
C (element-wise product)

The modulation will typically be small

t=1+ d d is zero-mean, variance << 1

Clutter signal with small modulation
X=X,+X_,od+n
Clutter correlation matrix
H{_ _ H H H 2
E{xx }_ R, = E{xcxC }+ E{xcxC }o E{dd }+ ol

=R_+R_ oT+0c°l
“known” / \ J/

component l unknown IS'I.
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Knowledge-Aided Quadratic Constraints

Full-DoF STAP

 The usual optimization problem:

min E{{w"x |’} st w'v=1 — w

-1
R,V
viRly

XX

* Incorporate covariance model as a quadratic constraint

(

whv =1
min E{{w"x |’} s.t. {W'R.w <§, <«

" want weights to be
“orthogonal™ to a priori
clutter model

w"w <8,

e QGives:

\this is the KA part

W = (Rxx +BdRC +B|_I)_1V . (Rxx ‘|‘Q)_1V

VIR, +BR BV VIR,
et

“colored loading”

+Q) v
IS1
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Constraint Satisfaction

The two loading levels are determined by assuring satisfaction
of the two soft constraints

Leads to two coupled non-linear inequality relations for the
two real scalar loading levels embedded in Q

V(R + Q)RR + Qv 8,V R+ Q) (1)
VR, +Q VS VIR +QNV ()
No closed form solution, must be solved iteratively

In the white noise gain relation, 6, >0 to obtain solution

In the clutter orthogonality relation, reducing 9, requires that
the colored loading level B, be increased

In the limit of 6, — O (true orthogonality of weights to the
clutter model), By = o

This can be demonstrated directly by comparing the quadratic
constraint weight solution with a multiple linear constraint
weight solution that enforces orthogonality explicitly ISI_
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Pre-Filter Interpretation
Full-DoF STAP

 Colored loading beamformer can be expressed as:

- Q—l/Z(Q—1/2RXXQ—1/2_l_l)—lQ—l/ZV
VHQ—1/2(Q—1/2RXXQ—1/2 n I)—lQ—1/2V

« This filtering solution is equivalent to deterministic pre-
filtering followed by adaptive processing (i.e., 2 stages)

)'Z — Q—l/ZX \7 — Q_llzv

1~ it will generally be easier to estimate the
—_ (R — + I) V covariance of the pre-filtered data than
W = XX | the original data because it is likely to
~H ( )_1~ have a lower effective rank
V(R +1)v
X STAP
~-1/2 covarianceest. |
X — Q constraint
diagonal loading

N\ J
\ J
g v IS'I.

. adaptive
deterministic P KASSPERCL-03/03 - 11




Reduced-DoF STAP

For many systems it is not possible to use full-DoF STAP
due to limited computational resources and sample support

A common approach is to break the full-DoF problem into a
number of smaller reduced-DoF problems via an NMxD (D <
NM) transformation H_, on the data:

_Hy O _ -1
X =H X W, =kR_V_
H : E H

Vv Ym = WnXn

—

V

m

The transformation H_ can also be applied to the clutter

covariance model and thermal noise;: thermal

2 noise

RC,m — H:RCHm Rn’m = H:RnHm covariance

This presentation will focus on multi-bin element space
post-Doppler STAP

Rn — INMXNM Rn,m — Hsz — IDxD ISI-
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Knowledge-Aided Quadratic Constraints

Reduced-DoF STAP

Similar to the full-DoF case we can incorporate the
reduced-DoF covariance model as a quadratic constraint

e 4 .
W H v =1 want weights to be
m=m “orthogonal” to the
reduced-DoF a

: H 2 H
rvv|n E{l Wme | } S.t. <Wch,me < Sdﬁ priori clutter model

m

H < .
| W W_ = 6L,m \ this is the KA part

. (Rm + Bd,ch,m + BL,mI)_lvm _ (Rm + Qm)_lvm
; V;(Rm + Bd,ch,m + BL,mI)_lvm V:(Rm + Qm)_lvm
“colored loading” /

Same form as full-DoF case (i.e., colored loading)
Can also be shown to be a prefilter on the reduced DoF

Gives:

data ISI.
Can be implemented in the data domain
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Observation

« Two approaches to reduced DoF processing with knowledge-

aided pre-filters:

Approach #1

Full-DoF KA
prefilter

DoF-reducing

transformation

Approach #2

Reduced-DoF
adaptive
beamforming

DoF-reducing
transformation

Reduced-DoF

KA prefilter

>~

Reduced-DoF
adaptive
beamforming

Reduced —-DoF

e
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Implementation

Typically, the loading matrix Q will be Hermitian and positive-
definite so that its Cholesky decomposition exists

Q — BdRc + 3|_I — Q1/2Q1/2 — CCH C and C are

— Lower
_ _ H Triangular
Qm R Bd,ch,m + BL,mI =CC
Approach #1, full-DoF pre-filter THEN reduced DoF/beamform

S _He-ly
X, =H C X =AX

Approach #2, reduced DoF THEN pre-filter/beamform

—~
—~—

X,=CH!x =AX

If loading matrix is constant with range, both sets of combined
pre-filter/reduced DoF matrices can be pre-computed once

Both can be efficiently implemented in data domain by
augmenting data matrix with identity matrix and using ISI_
QR decomposition KASSPERCL-03/03 - 15




Implementation, Cont’d

However, if Q is a function of range, then pre-filter must be
computed several times - Cholesky decomp scales as
O(DoF)"*3; more expensive for full-DoF

For Approach # 2, pre-filtering can be avoided by equivalently
color-loading reduced DoF data

—~—

X = H:x —>  Thencolor-load with  Q

Augment data matrix with Cholesky decomposition of reduced
color-loading matrix; then perform efficient QR decomposition

— As efficient as diagonal-loading-only in data domain
— Avoids application of inverse Cholesky matrix

If color-load, instead of pre-filter, in data domain for full-DoF, as
In Approach # 1, an additional Cholesky decomposition will be
required after the reduced DoF transformation since

P~

C # H:C (in general)

Appears Approach # 2 may be computationally less expensive
than #1; pursue # 2 here; examine performance of #1 vs # 2in ISI_

future
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KASSPER Simulated Data Cube

Rx: 36.27° N, 117.8° W (36.72° N, 117.2° W)
3000 m, (2088 m)
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ideal covariance

, » Site-specific data set generated
B under KASSPER program

~50 significant eigenvdlues ° Het_erogeneous cI_utter_, ground
T vehicles, ICM, calibration errors

"""" « We will focus on the problem of
R detecting slow moving targets in
] heterogeneous clutter = work

| with clutter-only data IS'I_
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Algorithm Details

Assume a ring of scatterers every 0.2° around the platform at the
desired range bin

— No knowledge about: terrain, calibration errors (~5°-10° phase errors),
ICM, backlobe level, Tx pattern

— Only platform heading, speed, and PRF are assumed known
Compute a matrix that represents the ground clutter (subspace):

NC
= Zv(ep’fp)v(ep’fp)H Rem = H:Rch

This form Is efficient to compute but not as accurate as the true
ideal covariance which will include information about the terrain

Scale this matrix and add to the diagonally-loaded reduced-DoF
sample covariance matrix:

Wm = K(Rs,m T BL,mI T Bd,ch,m)_lvm

Reduced-DoF implementation is multi-bin element space post-
Doppler STAP with untapered and orthogonal Doppler filters IS'I.
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IS1
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Detection Performance Summary
(“endo-clutter”)

Pfa vs. Pd: SNRO = 25 dB, Doppler = 24.9021 m/s

= CL, K=33
CL, K=66
CL, K=99
DL, K=33
DL, K=66
DL, K=99
Ideal Cov.
model-only

Post-Doppler
DoFs:
3 adjacent bins

2 bins away from
the mainlobe

Detector includes median CFAR normalization of the clutter bin
beamformer output prior to thresholding

yottargets in the secondary beamformer or CFAR training
ata

1000 Injected test targets: all ranges, Doppler = 24.90 m/s,
Target SNR is 25 dB at closest range bin (~5 dBsm)

Colored |loading beamformer is more robust as sample ISI_
support is reduced
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Detection Performance Summary
(“exo-clutter™)

Pfa vs. Pd: SNRO = 25 dB, Doppler = 99.8502 m/s

CL, K=33
CL, K=66
CL, K=99
DL, K=33
DL, K=66
DL, K=99
Ideal Cov.
model-only

Post-Doppler
DoFs:
3 adjacent bins

3 bins away from
the mainlobe
clutter bin

o« Same result as previous slide except injected target
Doppler is 99.85 m/s

* All the beamformers perform well when target is
separated from the mainbeam clutter

 Use the most computationally efficient algorithm in IS'I_

these Doppler bins
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Summary

A method for incorporating a priori knowledge in the space-
time beamformer solution using quadratic constraints has
been presented and extended to reduced-DoF STAP
Implementations

Quadratic constraint solution results in “colored” loading
which can be implemented efficiently in the data domain
and offers a “blending” between adaptive and deterministic
filtering

The fidelity of the colored loading matrix will depend on the
available a priori knowledge sources and computational
resources

The technique was applied to KASSPER site-specific
simulation data and shown to result in more robust
performance near the mainbeam clutter = improved MDV
performance

5L
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